Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

VHE gamma-ray observation of the Crab Nebula and its pulsar with the MAGIC telescope

dc.contributor.authorAntoranz Canales, Pedro
dc.contributor.authorBarrio Uña, Juan Abel
dc.contributor.authorContreras González, José Luis
dc.contributor.authorFonseca González, María Victoria
dc.contributor.authorLópez Moya, Marcos
dc.contributor.authorMiranda Pantoja, José Miguel
dc.contributor.authorNieto Castaño, Daniel
dc.date.accessioned2023-06-20T10:38:50Z
dc.date.available2023-06-20T10:38:50Z
dc.date.issued2008-02-20
dc.description© The American Astronomical Society. We are grateful for discussions with Kouichi Hirotani.We also would like to thank the IAC for the excellent working conditions at the ORM in La Palma. The support of the German BMBF and MPG, the Italian INFN, the Spanish CICYT, ETH research grant TH 34/04 3, and the PolishMNiI grant 1P03D01028 is gratefully acknowledged.
dc.description.abstractWe report about very high energy (VHE) gamma-ray observations of the Crab Nebula with the MAGIC telescope. The gamma-ray flux from the nebula was measured between 60 GeV and 9 TeV. The energy spectrum can be described by a curved power law dF/dE = f(0)(E/300 GeV)([a+b log)((E/300 GeV)])(10) with a flux normalization f(0) of (6.0 +/- 0.2(stat)) x 10(-10) cm(-2) s(-1) TeV-1, a = 2.31 +/- 0.06(stat), and b = 0.26 +/- 0.07(stat). The peak in the spectral energy distribution is estimated at 77 +/- 35 GeV. Within the observation time and the experimental resolution of the telescope, the gamma-ray emission is steady and pointlike. The emission's center of gravity coincides with the position of the pulsar. Pulsed gamma-ray emission from the pulsar could not be detected. We constrain the cutoff energy of the pulsed spectrum to be less than 27 GeV, assuming that the differential energy spectrum has an exponential cutoff. For a superexponential shape, the cutoff energy can be as high as 60 GeV.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipGerman BMBF
dc.description.sponsorshipGerman MPG
dc.description.sponsorshipItalian INFN
dc.description.sponsorshipSpanish CICYT
dc.description.sponsorshipETH
dc.description.sponsorshipPolishMNiI
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/23610
dc.identifier.doi10.1086/525270
dc.identifier.issn0004-637X
dc.identifier.officialurlhttp://dx.doi.org/10.1086/525270
dc.identifier.relatedurlhttp://iopscience.iop.org
dc.identifier.relatedurlhttp://arxiv.org/abs/0705.3244
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50885
dc.issue.number2
dc.journal.titleAstrophysical journal
dc.language.isoeng
dc.page.final1055
dc.page.initial1037
dc.publisherIOP Publishing
dc.relation.projectIDTH 34/04 3
dc.relation.projectID1P03D01028
dc.rights.accessRightsopen access
dc.subject.cdu537
dc.subject.cdu539.1
dc.subject.keywordAtmospheric Cherenkov Telescope
dc.subject.keywordRapidly Spinning Pulsars
dc.subject.keywordHigh-Energy Emission
dc.subject.keywordSlot Gaps
dc.subject.keywordTEV
dc.subject.keywordRadiation
dc.subject.keywordSpectrum
dc.subject.keywordWind
dc.subject.keywordSupernova
dc.subject.keywordPhotons.
dc.subject.ucmElectrónica (Física)
dc.subject.ucmElectricidad
dc.subject.ucmFísica nuclear
dc.subject.unesco2202.03 Electricidad
dc.subject.unesco2207 Física Atómica y Nuclear
dc.titleVHE gamma-ray observation of the Crab Nebula and its pulsar with the MAGIC telescope
dc.typejournal article
dc.volume.number674
dcterms.referencesAcharya, B. S., Bhat, P. N., Gandhi, V. N., RamanaMurthy, P. V., Sathyanarayana, G. P., Vishwanath, P. R. 1992, A&A, 258, 412. Aharonian, F. et al. 1999, A&A, 346, 913 ———. 2004, ApJ, 614, 897 ———. 2006, A&A, 457, 899. Aharonian, F. A., Atoyan, A. M. 1998, in Neutron Stars and Pulsars: Thirty Years after the Discovery, ed. N. Shibazaki (Tokyo: Universal Academy), 439. Aharonian, F. A., et al. 2000, A&A, 361, 1073. Akerlof, C., Dimarco, J., Levy, H., MacCallum, C., Meyer, D., Radusewicz, P., Tschirhart, R., Yama, Z. 1990, in Proc. 21st Int. Cosmic Ray Conf. (Adelaide), 135. Albert, J., et al. 2006, preprint (astro-ph/0612385) ———. 2007a, ApJ, 663, 125 ———. 2007b, Nucl. Instrum. Methods A, 583, 494 ———. 2008, Nucl. Instrum. Methods A, in press (arXiv: 0709.3719). Amato, E., Guetta, D., Blasi, P. 2003, A&A, 402, 827. Amenomori, M., et al. 1999, ApJ, 525, L93. Anykeyev, V. B., Spiridonov, A. A., Zhigunov, V. P. 1991, Nucl. Instrum. Methods Phys. Res. A, 303, 350. Arons, J. 1983, ApJ, 266, 215. Arqueros, F., et al. 2002, Astropart. Phys., 17, 293. Atoyan, A. M., Aharonian, F. A. 1996, MNRAS, 278, 525. Baillon, P., et al. 1991, in Proc. 22nd Int. Cosmic Ray Conf. ( Dublin), 220. Bednarek, W., Bartosik, M. 2003, A&A, 405, 689. Bednarek, W., Protheroe, R. J. 1997, Phys. Rev. Lett., 79, 2616. Bertero, M. 1989, Electronics and Electron Phys., 75, 1989. Bhat, P. N., Ramanamurthy, P. V., Sreekantan, B. V., Vishwanath, P. R. 1986, Nature, 319, 127. Bock, R. K., et al. 2004, Nucl. Instrum. Methods Phys. Res. A, 516, 511. Bogovalov, S. V., Aharonian, F. A. 2000, MNRAS, 313, 504. Breiman, L. 2001, Machine Learning, 45, 5. Bretz, T., Wagner, R. M. 2003, in Proc. 5th Int. Cosmic Ray Conf., 2947. Cheng, K. S., Ho, C., Ruderman, M. 1986a, ApJ, 300, 500 ———. 1986b, ApJ, 300, 522. Chiang, J., Romani, R. W. 1992, ApJ, 400, 629. Cocke, W. J., Disney, M. J., Taylor, D. J. 1969, Nature, 221, 525. Collins, G. W., II, Claspy, W. P., Martin, J. C. 1999, PASP, 111, 871. Cortina, J., et al. 2005, in Proc. 29th Int. Cosmic Ray Conf. ( Pune), 359 Daugherty, J. K., Harding, A. K. 1982, ApJ, 252, 337. de Jager, O. C. 1994, ApJ, 436, 239. de Jager, O. C., Harding, A. K. 1992, ApJ, 396, 161. de Jager, O. C., Harding, A. K., Michelson, P. F., Nel, H. I., Nolan, P. L., Sreekumar, P., Thompson, D. J. 1996, ApJ, 457, 253. de Jager,O. C., Raubenheimer, B. C., Swanepoel, J.W.H. 1989,A&A, 221, 180. de Naurois, M., et al. 2002, ApJ, 566, 343. Domingo-Santamaría, E., et al. 2005, in Proc. 29th Int. Cosmic Ray Conf. ( Pune), 363. Downthwaite, J. C., Harrison, A. B., Kirkman, I. W., Macrae, H. J., McComb, T. J. L., Orford, K. J., Turver, K. E., Walmsley, M. 1984, ApJ, 286, L35. Fierro, J. M., Michelson, P. F., Nolan, P. L., Thompson, D. J. 1998, ApJ, 494, 734. Fomin, V. P., Stepanian, A. A., Lamb, R. C., Lewis, D. A., Punch, M., Weekes, T. C. 1994, Astropart. Phys., 2, 137. Garczarczyk, M. 2006, Ph.D. thesis, Univ. Rostock. Gaug, M., Bartko, H., Cortina, J., Rico, J. 2005, in Proc. 29th Int. Cosmic Ray Conf. ( Pune), 375. Gibson, A. I., Harrison, A. B., Kirkman, I. W., Lotts, A. P., Macrae, J. H., Orford, K. J., Turver, K. E., Walmsley, M. 1982, Nature, 296, 833. Goret, P., Palfrey, T., Tabary, A., Vacanti, G., Bazer-Bachi, R. 1993, A&A, 270, 401. Gould, R. J. 1965, Phys. Rev. Lett., 15, 577. Gregory, P. C., Loredo, T. J. 1992, ApJ, 398, 146. Harding, A. K., Tademaru, E., & Esposito, L. W. 1978, ApJ, 225, 226. Hester, J. J., et al. 2002, ApJ, 577, L49. Hillas, A. M. 1985, in Proc. 19th Int. Cosmic Ray Conf. (La Jolla), 445. Hillas, A. M., et al. 1998, ApJ, 503, 744. Hirotani, K. 2001, ApJ, 549, 495 ———. 2007, ApJ, 662, 1173. Hirotani, K., Shibata, S. 2001, ApJ, 558, 216. Kennel, C. F., Coroniti, F. V. 1984a, ApJ, 283, 694 ———. 1984b, ApJ, 283, 710. Konopelko, A., et al. 1996, Astropart. Phys., 4, 199. Lessard, R.W., Buckley, J.H., Connaughton,V., Le Bohec, S. 2001, Astropart. Phys., 15, 1. Lessard, R. W., et al. 2000, ApJ, 531, 942. Li, T.-P., Ma, Y.-Q. 1983, ApJ, 272, 317. Lorenz, E. 2004, NewA Rev., 48, 339. Lucarelli, F., et al. 2005, in Proc. 29th Int. Cosmic Ray Conf. ( Pune), 367. Majumdar, P., et al. 2002, in The Universe Viewed in Gamma-Rays, ed. R. Enomoto, M. Mori, S. Yanagita (Tokyo: Universal Academy). Mirzoyan, R., Lorenz, E. 1997, in Proc. 25th Int. Cosmic Ray Conf. ( Durban), 265. Muslimov, A. G., Harding, A. K. 2003, ApJ, 588, 430. Musquere, A. 1999, in Proc. 26th Int. Cosmic Ray Conf. (Salt Lake City), 460. Nolan, P. L., et al. 1993, ApJ, 409, 697. Oosterbroek, T., deBruijne, J. H. J.,Martin,D.,Verhoeve, P., Perryman, M.A. C., Erd, C., Schulz, R. 2006, A&A, 456, 283. Oser, S., et al. 2001, ApJ, 547, 949. Paneque, D., Gebauer, H. J., Lorenz, E., Martinez, M., Mase, K., Mirzoyan, R., Ostankov, A., Schweizer, T. 2003, Nucl. Instrum. Methods Phys. Res. A, 504, 109. Rees, M. J., Gunn, J. E. 1974, MNRAS, 167, 1. Rolke, W. A., López, A. M., Conrad, J. 2005, Nucl. Instrum. Methods Phys. Res. A, 551, 493. Schmelling, M. 1994, Nucl. Instrum. Methods Phys. Res. A, 340, 400. Smith, D. A., et al. 2006, A&A, 459, 453. Staelin, D. H., Reifenstein, E. C. 1968, Science, 162, 1481. Tanimori, T., et al. 1998, ApJ, 492, L33. Taylor, J. H., Manchester, R. N., Nice, D. J., Weisberg, J. M., Irwin, A., Wex, N. 2000, Tempo Pulsar Timing Package Thompson, D. J., et al. 1999, ApJ, 516, 297 ———. 2004, in Cosmic Gamma-Ray Sources, ed. K. S. Cheng G. E. Romero ( Dordrecht: Kluwer), 149 ———. 2005, ApJS, 157, 324. Tikhonov, A. N., Arsenin, V. J. 1979, Methods of Solution of Ill-posed Problems (Washington: Winston & Sons). Vacanti, G., et al. 1991, ApJ, 377, 467. Weekes, T. C., et al. 1989, ApJ, 342, 379. Yao, W.-M., et al. 2006, J. Phys. G, 33, 1.
dspace.entity.typePublication
relation.isAuthorOfPublication6bc87e5f-9b77-4982-b112-0d4f8aa128d0
relation.isAuthorOfPublication11e5fd8b-1a86-4f8d-85c6-135541232be4
relation.isAuthorOfPublication6a14529e-a65e-4709-9bc1-61f9429841c1
relation.isAuthorOfPublication9f2c0e34-0edd-497a-bbd0-fbd9d348e85c
relation.isAuthorOfPublication8b5d96d7-bd11-4ee4-87d0-258a1e077e26
relation.isAuthorOfPublication328f9716-2012-44f9-aacc-ef8d48782a77
relation.isAuthorOfPublication60928160-a862-4814-a08f-4d80c6a1cdab
relation.isAuthorOfPublication.latestForDiscovery6bc87e5f-9b77-4982-b112-0d4f8aa128d0

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MirandaJM63libre.pdf
Size:
11.27 MB
Format:
Adobe Portable Document Format

Collections