Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Corrigendum on the proof of completeness for exceptional Hermite polynomials.

dc.contributor.authorGómez-Ullate Oteiza, David
dc.contributor.authorGrandati, Yves
dc.contributor.authorMilson, Robert
dc.date.accessioned2023-06-16T15:17:25Z
dc.date.available2023-06-16T15:17:25Z
dc.date.issued2020-05
dc.description© 2019 Published by Elsevier Inc. We would like to thank Antonio Duran for bringing this observation to our attention and taking part in rigorous discussions on the matter. We would like to thank Paul Nevai for motivating this exchange with Antonio Duran and giving us the opportunity to prepare this amended proof. The research of DGU has been supported in part by Spanish MINECO, Spain FEDER Grants RTI2018-100754-B-I00 and PGC2018-096504-B-C33. The research of RM was supported in part by Natural Sciences and Engineering Research Council, Canada grant RGPIN-228057-2009.
dc.description.abstractExceptional orthogonal polynomials are complete families of orthogonal polynomials that arise as eigenfunctions of a Sturm-Liouville problem. Antonio Duran discovered a gap in the original proof of completeness for exceptional Hermite polynomials, that has propagated to analogous results for other exceptional families In this paper we provide an alternative proof that follows essentially the same arguments, but provides a direct proof of the key lemma on which the completeness proof is based. This direct proof makes use of the theory of trivial monodromy potentials developed by Duistermaat and Grtinbaum and Oblomkov. (C) 2019 Published by Elsevier Inc.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)/ FEDER
dc.description.sponsorshipNatural Sciences and Engineering Research Council of Canada
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/60246
dc.identifier.doi10.1016/j.jat.2019.105350
dc.identifier.issn0021-9045
dc.identifier.officialurlhttp://dx.doi.org/10.1016/j.jat.2019.105350
dc.identifier.relatedurlhttps://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/6203
dc.journal.titleJournal of approximation theory
dc.language.isoeng
dc.publisherAcademic Press Inc Elsevier Science
dc.relation.projectID(RTI2018-100754-B-I00; PGC2018-096504-B-C33)
dc.relation.projectIDRGPIN-228057-2009
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subject.cdu51-73
dc.subject.keywordExceptional Hermite polynomials
dc.subject.keywordTrivial monodromy potentials
dc.subject.keywordCompleteness.
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleCorrigendum on the proof of completeness for exceptional Hermite polynomials.
dc.typejournal article
dc.volume.number253
dspace.entity.typePublication
relation.isAuthorOfPublication17de85e3-ef03-4749-b8f1-4b1f7673f31c
relation.isAuthorOfPublication.latestForDiscovery17de85e3-ef03-4749-b8f1-4b1f7673f31c

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
gomez-ullate43 postprint+CC(nc-nd)+EMB_01_may_2022.pdf
Size:
270.15 KB
Format:
Adobe Portable Document Format

Collections