Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Constraining the Kahler moduli in the heterotic standard model

dc.contributor.authorGómez, Tomás L.
dc.contributor.authorLukic, Sergio
dc.contributor.authorSols Lucía, Ignacio
dc.date.accessioned2023-06-20T10:33:14Z
dc.date.available2023-06-20T10:33:14Z
dc.date.issued2007-11
dc.description.abstractPhenomenological implications of the volume of the Calabi-Yau threefolds on the hidden and observable M-theory boundaries, together with slope stability of their corresponding vector bundles, constrain the set of Kahler moduli which give rise to realistic compactifications of the strongly coupled heterotic string. When vector bundles are constructed using extensions, we provide simple rules to determine lower and upper bounds to the region of the Kahler moduli space where such compactifications can exist. We show how small these regions can be, working out in full detail the case of the recently proposed Heterotic Standard Model. More explicitly, we exhibit Kahler classes in these regions for which the visible vector bundle is stable. On the other hand, there is no polarization for which the hidden bundle is stable.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statusinpress
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20143
dc.identifier.doi10.1007/s00220-007-0338-8
dc.identifier.issn0010-3616
dc.identifier.officialurlhttps://link.springer.com/article/10.1007/s00220-007-0338-8
dc.identifier.relatedurlhttp://link.springer.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50477
dc.issue.number1
dc.journal.titleCommunications in Mathematical Physics
dc.language.isoeng
dc.page.final21
dc.page.initial1
dc.publisherSpringer
dc.rights.accessRightsrestricted access
dc.subject.cdu512
dc.subject.keywordCalabi-yau threefolds
dc.subject.keywordCompactifications
dc.subject.keywordSurfaces
dc.subject.keywordCone
dc.subject.ucmÁlgebra
dc.subject.unesco1201 Álgebra
dc.titleConstraining the Kahler moduli in the heterotic standard model
dc.typejournal article
dc.volume.number276
dcterms.referencesBanks, T., Dine, M.: Couplings and Scales in Strongly Coupled Heterotic String Theory. Nucl. Phys. B 479, 173–196 (1996) Braun, V., He, Y-H., Ovrut, B.A., Pantev, T.: Vector Bundle Extensions, Sheaf Cohomology, and the Heterotic Standard Model. Adv. Theor. Math. Phys. 10, 4 (2006) Braun, V., He, Y-H., Ovrut, B.A., Pantev, T.: Heterotic Standard Model Moduli. JHEP 0601, 025 (2006) Braun, V., He, Y-H., Ovrut, B.A., Pantev, T.: The Exact MSSM Spectrum from String Theory. JHEP 0605, 043 (2006) Braun, V., Ovrut, B.A., Pantev, T., Reinbacher, R.: Elliptic Calabi-Yau Threefolds with Z 3 ×Z 3 Wilson Lines. JHEP 0412, 062 (2004) Curio, G., Krause, A.: Nucl.Phys. B 602, 172–200 (2001) Curio, G., Krause, A.: Nucl.Phys. B 693, 195–222 (2004) Donagi, R., Bouchard, V.: An SU(5) Heterotic Standard Model. Phys. Lett. B 633, 483–791 (2006) Donaldson, S.K., Kronheimer, P.B.: The Geometry of Four-Manifolds. Oxford: Oxford University Press, 1990 Douglas, M.R.: The Statistics of String/M -Theory Vacua. JHEP 0305, 046 (2003) Douglas, M.R., Fiol, B., Römelsberger, C.: Stability and BPS branes. JHEP 0509, 006 (2005) Grassi, A., Morrison, D.R.: Automorphisms and the Kähler cone of certain Calabi-Yau manifolds. Duke Math. J. 71, 831–838 (1993) Gukov, S., Kachru, S., Liu, X., McAllister, L.: Heterotic Moduli Stabilization with Fractional Chern-Simons Invariants. Phys. Rev. D 69, 086008 (2004) Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, No. 52, New York: Springer-Verlag, 1977 Hořava, P., Witten, E.: Eleven-dimensional supergravity on a manifold with boundary. Nucl. Phys. B 475, 94–114 (1996) Joyce, D.D.: Compact Manifolds with Special Holonomy. Oxford: Oxford University Press, 2000 MR1787733 (2001k:53093) Looijenga, E.: Rational surfaces with an anti-canonical cycle. Ann. of Math. (2) 114, 267–322 (1981) Namikawa, Yo.: On the birational structure of certain Calabi-Yau threefolds. J. Math. Kyoto Univ. 31, 151–164 (1991) Schoen, C.: On the fiber products of rational elliptic surfaces with sections. Math. Ann. 197, 177–199 (1988) Sharpe, E.: Kähler Cone Substructure. Adv. Theor. Math. Phys. 2, 1441 (1998) Wilson, P.M.H.: The Kähler cone on Calabi-Yau threefolds. Invent. Math. 107, 561–583 (1992) Witten, E.: Strong coupling expansion of Calabi-Yau compactification. Nucl. Phys. B 471, 135–158 (1996)
dspace.entity.typePublication
relation.isAuthorOfPublication6d35def4-3d5f-4978-800f-82b7edf76b5d
relation.isAuthorOfPublication.latestForDiscovery6d35def4-3d5f-4978-800f-82b7edf76b5d

Download

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Sols04libre.pdf
Size:
250.71 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Sols04de_pago.pdf
Size:
256.88 KB
Format:
Adobe Portable Document Format

Collections