Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Ends of knot groups

dc.contributor.authorMontesinos Amilibia, José María
dc.contributor.authorGonzález Acuña, Francisco Javier
dc.date.accessioned2023-06-21T02:02:58Z
dc.date.available2023-06-21T02:02:58Z
dc.date.issued1978
dc.description.abstractIn 1962, R. H. Fox asked [Topology of 3-manifolds and related topics (Proc. Univ. Georgia Inst., 1961), pp. 168–176, especially pp. 175–176, Prentice-Hall, Englewood Cliffs, N.J., 1962)] whether a 2-knot group could have infinitely many ends. The authors answer this question in the affirmative by exhibiting 2-knots whose groups have infinitely many ends.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17263
dc.identifier.doi10.2307/1970930
dc.identifier.issn0003-486X
dc.identifier.officialurlhttp://www.jstor.org/stable/1970930
dc.identifier.relatedurlhttp://www.jstor.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/64712
dc.issue.number1
dc.journal.titleAnnals of Mathematics
dc.language.isoeng
dc.page.final96
dc.page.initial91
dc.publisherPrinceton University
dc.rights.accessRightsrestricted access
dc.subject.cdu515.14
dc.subject.keywordhigher dimensional knot groups with infinitely many ends
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleEnds of knot groups
dc.typejournal article
dc.volume.number108
dcterms.referencesJ. J. ANDREWS and M. L. CURTIS, Free groups and handlebodies, Proc. A.M.S. 16 (1965), 192-195. E. ARTIN, Zur Isotopie zweidimensionalen Flichen im R4, Abh. Math. Sem. Univ. Ham- burg 4 (1926), 174-177. D. B. A. EPSTEIN, Ends, Topology of 3-Manifolds and Related Topics, M. K. Fort editor, Prentice Hall (1962). W. FEIT and J. G. THOMPSON, Solvability of groups of odd order, Pacific J. Math. 13 (1963), 775-1029. R. H. Fox, Some problems in knot theory, Topology of 3-Manifolds and Related Topics, M. K. Fort editor, Prentice Hall (1962). M. GERSTENHABER and 0. S. ROTHAUS, The solution of sets of equations in groups, Proc. N.A.S.U. 48 (1962), 1531-1533. B. HUPPERT, Endliche gruppen I, Die Grundlehren der mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin (1967). M. KERVAIRE, Les noeuds de dimensions superieures, Bull. Soc. Math. France 93 (1965), 225-271. J. M. MONTESINOS, A note on Andrews-Curtis' conjecture (in preparation). CH. D. PAPAKYRIAKOPOULOS, On the ends of the fundamental groups of 3-manifolds, Comment. Math. Helv. 32 (1957), 85-92. J. STALLINGS, A finitely presented group whose 3-dimensional integral homology is not finitely generated, Amer. J. Math. 85 (1963), 541-543. J. STALLINGS, Group Theory and Three-Dimensional Manifolds, New Haven and London, Yale University Press (1971). D. W. SUMNERS, Homotopy torsion in codimension two knots, Proc. Amer. Math. Soc. 24 (1970), 229-240. J. H. C. WHITEHEAD, On the asphericity of regions in the 3-sphere, Fund. Math. 32 (1939), 149-166. E. C. ZEEMAN, Twisting spun knots, Trans. Amer. Math. Soc. 115 (1965), 471-495.
dspace.entity.typePublication
relation.isAuthorOfPublication7097502e-a5b0-4b03-b547-bc67cda16ae2
relation.isAuthorOfPublication.latestForDiscovery7097502e-a5b0-4b03-b547-bc67cda16ae2

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Montesinos23.pdf
Size:
497.05 KB
Format:
Adobe Portable Document Format

Collections