Ends of knot groups
dc.contributor.author | Montesinos Amilibia, José María | |
dc.contributor.author | González Acuña, Francisco Javier | |
dc.date.accessioned | 2023-06-21T02:02:58Z | |
dc.date.available | 2023-06-21T02:02:58Z | |
dc.date.issued | 1978 | |
dc.description.abstract | In 1962, R. H. Fox asked [Topology of 3-manifolds and related topics (Proc. Univ. Georgia Inst., 1961), pp. 168–176, especially pp. 175–176, Prentice-Hall, Englewood Cliffs, N.J., 1962)] whether a 2-knot group could have infinitely many ends. The authors answer this question in the affirmative by exhibiting 2-knots whose groups have infinitely many ends. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/17263 | |
dc.identifier.doi | 10.2307/1970930 | |
dc.identifier.issn | 0003-486X | |
dc.identifier.officialurl | http://www.jstor.org/stable/1970930 | |
dc.identifier.relatedurl | http://www.jstor.org/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/64712 | |
dc.issue.number | 1 | |
dc.journal.title | Annals of Mathematics | |
dc.language.iso | eng | |
dc.page.final | 96 | |
dc.page.initial | 91 | |
dc.publisher | Princeton University | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 515.14 | |
dc.subject.keyword | higher dimensional knot groups with infinitely many ends | |
dc.subject.ucm | Geometria algebraica | |
dc.subject.unesco | 1201.01 Geometría Algebraica | |
dc.title | Ends of knot groups | |
dc.type | journal article | |
dc.volume.number | 108 | |
dcterms.references | J. J. ANDREWS and M. L. CURTIS, Free groups and handlebodies, Proc. A.M.S. 16 (1965), 192-195. E. ARTIN, Zur Isotopie zweidimensionalen Flichen im R4, Abh. Math. Sem. Univ. Ham- burg 4 (1926), 174-177. D. B. A. EPSTEIN, Ends, Topology of 3-Manifolds and Related Topics, M. K. Fort editor, Prentice Hall (1962). W. FEIT and J. G. THOMPSON, Solvability of groups of odd order, Pacific J. Math. 13 (1963), 775-1029. R. H. Fox, Some problems in knot theory, Topology of 3-Manifolds and Related Topics, M. K. Fort editor, Prentice Hall (1962). M. GERSTENHABER and 0. S. ROTHAUS, The solution of sets of equations in groups, Proc. N.A.S.U. 48 (1962), 1531-1533. B. HUPPERT, Endliche gruppen I, Die Grundlehren der mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin (1967). M. KERVAIRE, Les noeuds de dimensions superieures, Bull. Soc. Math. France 93 (1965), 225-271. J. M. MONTESINOS, A note on Andrews-Curtis' conjecture (in preparation). CH. D. PAPAKYRIAKOPOULOS, On the ends of the fundamental groups of 3-manifolds, Comment. Math. Helv. 32 (1957), 85-92. J. STALLINGS, A finitely presented group whose 3-dimensional integral homology is not finitely generated, Amer. J. Math. 85 (1963), 541-543. J. STALLINGS, Group Theory and Three-Dimensional Manifolds, New Haven and London, Yale University Press (1971). D. W. SUMNERS, Homotopy torsion in codimension two knots, Proc. Amer. Math. Soc. 24 (1970), 229-240. J. H. C. WHITEHEAD, On the asphericity of regions in the 3-sphere, Fund. Math. 32 (1939), 149-166. E. C. ZEEMAN, Twisting spun knots, Trans. Amer. Math. Soc. 115 (1965), 471-495. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 7097502e-a5b0-4b03-b547-bc67cda16ae2 | |
relation.isAuthorOfPublication.latestForDiscovery | 7097502e-a5b0-4b03-b547-bc67cda16ae2 |
Download
Original bundle
1 - 1 of 1