Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A novel data augmentation tool for enhancing machine learning classification: A new application of the higher order dynamic mode decomposition for improved cardiac disease identification

dc.contributor.authorGroun, Nourelhouda
dc.contributor.authorVillalba Orero, María
dc.contributor.authorCasado Martín, Lucía
dc.contributor.authorLara Pezzi, Enrique
dc.contributor.authorValero, Eusebio
dc.contributor.authorGaricano Mena, Jesús
dc.contributor.authorLe Clainche, Soledad
dc.date.accessioned2025-02-06T18:55:15Z
dc.date.available2025-02-06T18:55:15Z
dc.date.issued2025-03
dc.descriptionAuthor Contributions: Nourelhouda Groun: Writing – original draft, Investigation, Formal analysis. María Villalba-Orero: Resources, Data curation. Lucía Casado-Martín: Data curation. Enrique Lara-Pezzi: Resources, Data curation. Eusebio Valero: Supervision, Project administration, Funding acquisition. Jesús Garicano-Mena: Writing – review & editing, Validation, Supervision. Soledad Le Clainche: Writing – review & editing, Supervision, Methodology, Funding acquisition, Conceptualization.
dc.description.abstractIn this work, a data-driven, modal decomposition method, the higher order dynamic mode decomposition (HODMD), is combined with a convolutional neural network (CNN) in order to improve the classification accuracy of several cardiac diseases using echocardiography images. The HODMD algorithm is used first as feature extraction technique for the echocardiography datasets, taken from both healthy mice and mice afflicted by different cardiac diseases (Diabetic Cardiomyopathy, Obesity, TAC Hypertrophy and Myocardial Infarction). A total number of 130 echocardiography datasets are used in this work. The dominant features related to each cardiac disease were identified and represented by the HODMD algorithm as a set of DMD modes, which then are used as the input to the CNN. In a way, the database dimension was augmented, hence HODMD has been used, for the first time to the authors knowledge, for data augmentation in the machine learning framework. Six sets of the original echocardiography databases were hold out to be used as unseen data to test the performance of the CNN. In order to demonstrate the efficiency of the HODMD technique, two testcases are studied: the CNN is first trained using the original echocardiography images only, and second training the CNN using a combination of the original images and the DMD modes. The classification performance of the designed trained CNN shows that combining the original images with the DMD modes improves the results in all the testcases, as it improves the accuracy by up to 22%. These results show the great potential of using the HODMD algorithm as a data augmentation technique.
dc.description.departmentDepto. de Medicina y Cirugía Animal
dc.description.facultyFac. de Veterinaria
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (España)
dc.description.sponsorshipEuropean Commission
dc.description.statuspub
dc.identifier.citationNourelhouda Groun, María Villalba-Orero, Lucía Casado-Martín, Enrique Lara-Pezzi, Eusebio Valero, Jesús Garicano-Mena, Soledad Le Clainche, A novel data augmentation tool for enhancing machine learning classification: A new application of the higher order dynamic mode decomposition for improved cardiac disease identification, Results in Engineering, Vol 25, 2025, 104143, https://doi.org/10.1016/j.rineng.2025.104143.
dc.identifier.doi10.1016/j.rineng.2025.104143
dc.identifier.issn2590-1230
dc.identifier.officialurlhttps://doi.org/10.1016/j.rineng.2025.104143
dc.identifier.urihttps://hdl.handle.net/20.500.14352/117897
dc.issue.number104143
dc.journal.titleResults in Engineering
dc.language.isoeng
dc.page.final11
dc.page.initial1
dc.publisherElsevier
dc.relation.projectIDTED2021-129774B-C21
dc.relation.projectIDPLEC2022-009235
dc.relation.projectIDPID2023-147790OB-I00
dc.relation.projectID101072559
dc.relation.projectID101072779
dc.relation.projectIDNextSim/AEI/10.13039/501100011033
dc.relation.projectIDGA-956104
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.cdu61
dc.subject.keywordDeep learning
dc.subject.keywordHigher order dynamic mode decomposition
dc.subject.keywordClassification
dc.subject.keywordData augmentation
dc.subject.keywordEchocardiography
dc.subject.ucmCiencias Biomédicas
dc.subject.unesco24 Ciencias de la Vida
dc.subject.unesco2404.01 Bioestadística
dc.titleA novel data augmentation tool for enhancing machine learning classification: A new application of the higher order dynamic mode decomposition for improved cardiac disease identification
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number25
dspace.entity.typePublication
relation.isAuthorOfPublication4072ae83-66a7-4959-ab38-1cae01035591
relation.isAuthorOfPublication.latestForDiscovery4072ae83-66a7-4959-ab38-1cae01035591

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ResultsInEngineering.pdf
Size:
3.85 MB
Format:
Adobe Portable Document Format
Description:
A novel data augmentation tool for enhancing machine learning classification: A new application of the higher order dynamic mode decomposition for improved cardiac disease identification

Collections