Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Computational analysis of the maximal queue length in the MAP/M/c retrial queue

dc.contributor.authorArtalejo Rodríguez, Jesús Manuel
dc.contributor.authorChakravarthy, S. R.
dc.date.accessioned2023-06-20T09:35:28Z
dc.date.available2023-06-20T09:35:28Z
dc.date.issued2006-12-15
dc.description.abstractWe consider a multi-server retrial queueing model in which arrivals occur according to a Markovian arrival process. Using continuous-time Markov chain with absorbing states, we determine the distribution of the maximum number of customers in a retrial orbit. Illustrative numerical examples that reveal some interesting results are presented.
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15500
dc.identifier.doi10.1016/j.amc.2006.05.140
dc.identifier.issn0096-3003
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0096300306006886
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/49981
dc.issue.number2
dc.journal.titleApplied Mathematics and Computation
dc.language.isoeng
dc.page.final1409
dc.page.initial1399
dc.publisherElsevier
dc.relation.projectIDMTM 2005-01248
dc.rights.accessRightsrestricted access
dc.subject.cdu519.8
dc.subject.keywordMarkovian arrival process
dc.subject.keywordRetrial
dc.subject.keywordBusy period
dc.subject.keywordQueueing
dc.subject.keywordAlgorithmic probability
dc.subject.ucmInvestigación operativa (Matemáticas)
dc.subject.unesco1207 Investigación Operativa
dc.titleComputational analysis of the maximal queue length in the MAP/M/c retrial queue
dc.typejournal article
dc.volume.number183
dcterms.referencesA.S. Alfa, K.P. Sapna Isotupa, An M/PH/k retrial queue with finite number of sources, Computers and Operations Research 31 (2004) 1455–1464. J.R. Artalejo, G.I. Falin, Standard and retrial queueing systems: A comparative analysis, Revista Matematica Complutense 15 (2002) 101–129. J.R. Artalejo, J.R., A. Economou, M.J. Lopez-Herrero, Algorithmic analysis of the maximum queue length in a busy period for the M/M/c retrial queue, Informs Journal on Computing, in press. L. Breuer, A.N. Dudin, V.I. Klimenok, A retrial BMAP/PH/N system, Queueing Systems 40 (2002) 433–457. S.R. Chakravarthy, The batch Markovian arrival process: A review and future work, in: A. Krishnamoorthy et al. (Eds.), Advances in Probability Theory and Stochastic Processes, Notable Publications Inc., NJ, 2000, pp. 21–39. S.R. Chakravarthy, A.N. Dudin,Amulti-server retrial queue withBMAParrivals and group services, Queueing Systems 42 (2002) 5–31. S.R. Chakravarthy, A.N. Dudin, Analysis of a retrial queuing model with MAP arrivals and two types of customers, Mathematical and Computer Modelling 37 (2003) 343–363. S.R. Chakravarthy, A multi-server queueing model with Markovian arrivals and multiple thresholds, Asia-Pacific Journal of Operational Research, in press. S.R. Chakravarthy, A. Krishnamoorthy, V.C. Joshua, Analysis of a multi-server queue with search of customers from the orbit, Performance Evaluation 63 (2006) 776–798. B.D. Choi, Y. Chang, MAP1, MAP2/M/c with retrial queue with the retrial group of finite capacity and geometric loss, Mathematical and Computer Modelling 30 (1999) 99–113. B.D. Choi, Y. Chang, B. Kim, MAP1, MAP2/M/c retrial queue with guard channels and its application to cellular networks, Top 7 (1999) 231–248. J.E. Diamond, A.S. Alfa, Matrix analytic methods for a multi-server retrial queue with buffer, Top 7 (1999) 249–266. G.I. Falin, J.G.C. Templeton, Retrial Queues, Chapman and Hall, London, 1997. A. Gomez-Corral, On extreme values of orbit lengths in M/G/1 queues with constant retrial rate, OR Spectrum 23 (2001) 395–409. A. Gomez-Corral, A bibliographical guide to the analysis of retrial queues through matrix analytic techniques, Annals of Operations Research 141 (2006) 163–191. M.J. Lopez-Herrero, M.F. Neuts, The distribution of the maximum orbit size of anM/G/1 retrial queue during a busy period, in: J.R. Artalejo, A. Krishnamoorthy (Eds.), Notable Publications Inc., NJ, 2002, pp. 219–231. D.M. Lucantoni, New results on the single server queue with a batch Markovian arrival process, Stochastic Models 7 (1991) 1–46. M. Marcus, H. Minc, A Survey of Matrix Theory and Matrix Inequalities, Allyn & Bacon, Boston, MA, 1964. M.F. Neuts, The distribution of the maximum length of a Poisson queue during a busy period, Operations Research 12 (1964) 281–285. M.F. Neuts, Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach, The Johns Hopkins University Press, Baltimore, MD, 1981. M.F. Neuts, Structured Stochastic Matrices of M/G/1 type and their Applications, Marcel Dekker, NY, 1989. M.F. Neuts, Models based on the Markovian arrival process, IEICE Transactions on Communications E75B (1992) 1255–1265. R.F. Serfozo, Extreme values of birth and death processes and queues, Stochastic Processes and their Applications 27 (1988) 291–306. Y.W. Shin, Multi-server retrial queue with negative customers and disasters, in: B.D. Choi (Ed.), Proceedings of the Fifth International Workshop on Retrial Queues, TMRC, Korea University, Seoul, 2004, pp. 53–60.
dspace.entity.typePublication
relation.isAuthorOfPublicationdb4b8a04-44b0-48e9-8b2c-c80ffae94799
relation.isAuthorOfPublication.latestForDiscoverydb4b8a04-44b0-48e9-8b2c-c80ffae94799

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
arta28.pdf
Size:
172.97 KB
Format:
Adobe Portable Document Format

Collections