Young's Experiment with Entangled Bipartite Systems: The Role of Underlying Quantum Velocity Fields
dc.contributor.author | Sanz Ortiz, Ángel Santiago | |
dc.date.accessioned | 2024-03-18T10:30:07Z | |
dc.date.available | 2024-03-18T10:30:07Z | |
dc.date.issued | 2023-07-17 | |
dc.description.abstract | We consider the concept of velocity fields, taken from Bohmian mechanics, to investigate the dynamical effects of entanglement in bipartite realizations of Young's two-slit experiment. In particular, by comparing the behavior exhibited by factorizable two-slit states (cat-type state analogs in the position representation) with the dynamics exhibited by a continuous-variable Bell-type maximally entangled state, we find that, while the velocity fields associated with each particle in the separable scenario are well-defined and act separately on each subspace, in the entangled case there is a strong deformation in the total space that prevents this behavior. Consequently, the trajectories for each subsystem are not constrained any longer to remain confined within the corresponding subspace; rather, they exhibit seemingly wandering behavior across the total space. In this way, within the subspace associated with each particle (that is, when we trace over the other subsystem), not only interference features are washed out, but also the so-called Bohmian non-crossing rule (i.e., particle trajectories are allowed to get across the same point at the same time). | |
dc.description.department | Depto. de Óptica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Agencia Estatal de Investigación (España) | |
dc.description.sponsorship | Unión Europea | |
dc.description.status | pub | |
dc.identifier.citation | Sanz, Á.S. Young’s Experiment with Entangled Bipartite Systems: The Role of Underlying Quantum Velocity Fields. Entropy 2023, 25, 1077. https://doi.org/ 10.3390/e25071077 | |
dc.identifier.doi | 10.3390/e25071077 | |
dc.identifier.essn | 1099-4300 | |
dc.identifier.officialurl | https://www.mdpi.com/1099-4300/25/7/1077 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/102281 | |
dc.issue.number | 7 | |
dc.journal.title | Entropy | |
dc.language.iso | eng | |
dc.page.final | 1077-23 | |
dc.page.initial | 1077-1 | |
dc.publisher | MDPI | |
dc.relation.projectID | PID2021-127781NB-I00P | |
dc.rights | Attribution 4.0 International | en |
dc.rights.accessRights | open access | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject.cdu | 535 | |
dc.subject.keyword | Continuous variable entanglement | |
dc.subject.keyword | Bipartite states | |
dc.subject.keyword | Young’s interference | |
dc.subject.keyword | Cat state | |
dc.subject.keyword | Gaussian wave packet | |
dc.subject.keyword | Quantum phase field | |
dc.subject.keyword | Transverse velocity field | |
dc.subject.keyword | Bohmian mechanics | |
dc.subject.ucm | Óptica (Física) | |
dc.subject.unesco | 2209 Óptica | |
dc.title | Young's Experiment with Entangled Bipartite Systems: The Role of Underlying Quantum Velocity Fields | |
dc.type | journal article | |
dc.type.hasVersion | VoR | |
dc.volume.number | 25 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 73ba33ad-86c4-4345-961c-7e38f1dbcb9f | |
relation.isAuthorOfPublication.latestForDiscovery | 73ba33ad-86c4-4345-961c-7e38f1dbcb9f |
Download
Original bundle
1 - 1 of 1