Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

How ice grows from premelting films and water droplets

dc.contributor.authorSibley, David N.
dc.contributor.authorLlombart, Pablo
dc.contributor.authorNoya, Eva G.
dc.contributor.authorArcher, Andrew J.
dc.contributor.authorMacDowell, Luis G.
dc.date.accessioned2023-06-17T08:57:53Z
dc.date.available2023-06-17T08:57:53Z
dc.date.issued2021-01-11
dc.description.abstractClose to the triple point, the surface of ice is covered by a thin liquid layer (so-called quasi-liquid layer) which crucially impacts growth and melting rates. Experimental probes cannotobserve the growth processes below this layer, and classical models of growth by vapordeposition do not account for the formation of premeltingfilms. Here, we develop a meso-scopic model of liquid-film mediated ice growth, and identify the various resulting growthregimes. At low saturation, freezing proceeds by terrace spreading, but the motion of theburied solid is conveyed through the liquid to the outer liquid–vapor interface. At highersaturations water droplets condense, a large crater forms below, and freezing proceedsundetectably beneath the droplet. Our approach is a general framework that naturally models freezing close to three phase coexistence and provides afirst principle theory of ice growthand melting which may prove useful in the geosciences
dc.description.departmentDepto. de Química Física
dc.description.facultyFac. de Ciencias Químicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.sponsorshipBSC/MN
dc.description.sponsorshipRed Española de Supercomputación
dc.description.sponsorshipEPSRC
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/63751
dc.identifier.doidoi.org/10.1038/s41467-020-20318-6
dc.identifier.issn2041-1723 (online)
dc.identifier.officialurlhttps://www.nature.com/articles/s41467-020-20318-6
dc.identifier.relatedurlhttps://doi.org/10.1038/s41467-020-20318-6
dc.identifier.urihttps://hdl.handle.net/20.500.14352/7739
dc.journal.titleNature Communications
dc.language.isoeng
dc.page.initial239
dc.publisherSpringer Nature
dc.relation.projectIDFIS2017-89361-C3-2-
dc.relation.projectIDQCM-2017-2-0008 y QCM-2017-3-0034
dc.relation.projectIDEP/R006520/1.
dc.rights.accessRightsopen access
dc.subject.cdu544
dc.subject.keywordQuasi-liquid layer
dc.subject.keywordPremelting
dc.subject.keywordCrystal Growth
dc.subject.keywordSurface Science
dc.subject.keywordIce
dc.subject.keywordThin film Equation
dc.subject.keywordGradient Dynamics
dc.subject.keywordHielo
dc.subject.keywordCrecimiento Cristalino
dc.subject.keywordCapa cuasi-líquida
dc.subject.ucmFísica atmosférica
dc.subject.ucmQuímica física (Física)
dc.subject.ucmSuperficies (Física)
dc.subject.unesco2501 Ciencias de la Atmósfera
dc.subject.unesco2210 Química Física
dc.subject.unesco2211.28 Superficies
dc.titleHow ice grows from premelting films and water droplets
dc.typejournal article
dc.volume.number12
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Sibley_et_al-2021-Nature_Communications.pdf
Size:
1.6 MB
Format:
Adobe Portable Document Format

Collections