Blow-up with logarithmic nonlinearities
Loading...
Download
Official URL
Full text at PDC
Publication date
2007
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Citation
Abstract
We study the asymptotic behaviour of nonnegative solutions of the nonlinear diffusion equation in the half-line with a nonlinear boundary condition, ut = uxx − _(u + 1) logp(u + 1) (x, t) € R+ × (0, T),−ux(0, t) = (u + 1) logq(u + 1)(0, t) t € (0, T),u(x, 0) = u0(x) x € R+, with p, q, _ > 0. We describe in terms of p, q and when the solution is global in time and when it blows up in finite time. For blow-up solutions we find the blow-up rate and the blow-up set and we describe the asymptotic behaviour close to the blow-up time, showing that a phenomenon of asymptotic simplification takes place. We finally study the appearance of extinction in finite time.