Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Classification of filiform Lie algebras in dimension 8

Loading...
Thumbnail Image

Official URL

Full text at PDC

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Universidad de Extremadura, Departamento de Matemáticas
Citations
Google Scholar

Citation

Abstract

The classification of real and complex filiform Lie algebras is known in dimension less or equal than 7 (cf. [3] for dimension less or equal than 6 and [1] for dimension 7). The set of isomorphism classes has a finite number of points up to dimension 6. In dimension 7 we get a line 8real or complex on the case) and 9 points (resp. 8) for the real case (resp. complex). Note that dimension p=7 is the smallest for which it does not exit any rigid filiform law in the algebraic variety Np of nilpotent Li algebra laws in dimension p (cf. [1]). In this work we give the classification of complex filiform Lie algebras in dimension 8, and we obtain that the set of isomorphism classes is union of a finite number of lines (only two intersecting) and a finite number of points. In this case, we find a unique rigid filiform law in N8.

Research Projects

Organizational Units

Journal Issue

Description

UCM subjects

Unesco subjects

Keywords

Collections