Differential invariants of R ∗-structures
dc.contributor.author | Valdés Morales, Antonio | |
dc.date.accessioned | 2023-06-20T18:48:28Z | |
dc.date.available | 2023-06-20T18:48:28Z | |
dc.date.issued | 1996-02 | |
dc.description.abstract | A differential invariant of a G-structure is a function which depends on the r-jet of the G-structure and such that it is invariant under the natural action of the pseudogroup of diffeomorphisms of the base manifold. The importance of these objects is clear, since they seem to be the natural obstructions for the equivalence of G-structures. Hopefully, if all the differential invariants coincide over two r–jets of G-structure then they are equivalent under the action of the pseudogroup. If all the differential invariants coincide for every r it is hoped that the G-structures are formally equivalent, and so equivalent in the analytic case. This is the equivalence problem of E. Cartan. In this paper we deal with the problem of finding differential invariants on the bundles of *-structures, following the program pointed out in [3]. There are several reasons that justify the study of this type of G-structures. The first one is that it is a non-complicated example that helps to understand the G-structures with the property for the group G of having a vanishing first prolongation (i.e. of type 1). The simplicity comes from the fact that the algebraic invariants of * are very simple. The differential geometry of this type of structure, however, has much in common with general G-structures of type 1. Also, *-structures are objects of geometrical interest. They can be interpreted as ‘projective parallelisms’ of the base manifold and they can also be interpreted as a generalization of Blaschke's notion of a web. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/22466 | |
dc.identifier.doi | 10.1017/S030500410007420X | |
dc.identifier.issn | 0305-0041 | |
dc.identifier.officialurl | http://journals.cambridge.org/abstract_S030500410007420X | |
dc.identifier.relatedurl | http://journals.cambridge.org | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/58676 | |
dc.issue.number | 2 | |
dc.journal.title | Mathematical Proceedings of the Cambridge Philosophical Society | |
dc.language.iso | eng | |
dc.page.final | 356 | |
dc.page.initial | 341 | |
dc.publisher | Cambridge Univ Press | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 514.7 | |
dc.subject.keyword | R*-structure | |
dc.subject.keyword | projective parallelism | |
dc.subject.keyword | bundle of linear frames | |
dc.subject.keyword | bundle of projective frames | |
dc.subject.keyword | three-web | |
dc.subject.keyword | functorial connection | |
dc.subject.keyword | differential invariants | |
dc.subject.keyword | equivalence problem | |
dc.subject.ucm | Geometría diferencial | |
dc.subject.unesco | 1204.04 Geometría Diferencial | |
dc.title | Differential invariants of R ∗-structures | |
dc.type | journal article | |
dc.volume.number | 119 | |
dcterms.references | D. BERNARD. Sur la geometrie differentiel des G-structures. Ann. Inst. Fourier, Orenoble 10 (1960), 151-270. W. BLASHKE. Einfuhrung in die Geometrie der waben (Birkhauser-Verlag, 1955). P. L. GARCIA PEREZ and J. MUNOZ MASQUE. Differential invariants on the bundles of linear frames. J. Geom. Phys. 7 (1990), 395-418. P. L. GARCIA PEREZ and J. MUNOZ MASQUE. Differential invariants on the bundles of (g-structures, Lecture Notes in Math. Vol. 1410 (Springer-Verlag, 1989), pp. 177-201. V.V.GOLDBERG. Theory of multicodimensional n+l-webs (Kluwer Academic Publishers, 1988). VICTOR GUILLEMIN. The integrability problem for G-structures. Trans. Amer. Math. Soc. 116 (1965), 544-560. S. KOBAYASHI. Transformation groups in differential geometry (Springer-Verlag, 1972). S. KOBAYASHI and K. NOMIZU. Foundations of differential geometry I (Wiley, 1963). J. MUNOZ MASQUE. Formes de structure et transformations infinitesimales de contact d'ordre superieur. C.R. Acad. Sc. Paris 298, Serie I, (1984), 185-188. S. STERNBERG. Lectures on differential geometry (Chelsea Publishing Company, 2nd ed. 1983 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 2ee189aa-d1f1-45ca-a646-7433de5952b9 | |
relation.isAuthorOfPublication.latestForDiscovery | 2ee189aa-d1f1-45ca-a646-7433de5952b9 |
Download
Original bundle
1 - 1 of 1