Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Differential invariants of R ∗-structures

dc.contributor.authorValdés Morales, Antonio
dc.date.accessioned2023-06-20T18:48:28Z
dc.date.available2023-06-20T18:48:28Z
dc.date.issued1996-02
dc.description.abstractA differential invariant of a G-structure is a function which depends on the r-jet of the G-structure and such that it is invariant under the natural action of the pseudogroup of diffeomorphisms of the base manifold. The importance of these objects is clear, since they seem to be the natural obstructions for the equivalence of G-structures. Hopefully, if all the differential invariants coincide over two r–jets of G-structure then they are equivalent under the action of the pseudogroup. If all the differential invariants coincide for every r it is hoped that the G-structures are formally equivalent, and so equivalent in the analytic case. This is the equivalence problem of E. Cartan. In this paper we deal with the problem of finding differential invariants on the bundles of *-structures, following the program pointed out in [3]. There are several reasons that justify the study of this type of G-structures. The first one is that it is a non-complicated example that helps to understand the G-structures with the property for the group G of having a vanishing first prolongation (i.e. of type 1). The simplicity comes from the fact that the algebraic invariants of * are very simple. The differential geometry of this type of structure, however, has much in common with general G-structures of type 1. Also, *-structures are objects of geometrical interest. They can be interpreted as ‘projective parallelisms’ of the base manifold and they can also be interpreted as a generalization of Blaschke's notion of a web.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/22466
dc.identifier.doi10.1017/S030500410007420X
dc.identifier.issn0305-0041
dc.identifier.officialurlhttp://journals.cambridge.org/abstract_S030500410007420X
dc.identifier.relatedurlhttp://journals.cambridge.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58676
dc.issue.number2
dc.journal.titleMathematical Proceedings of the Cambridge Philosophical Society
dc.language.isoeng
dc.page.final356
dc.page.initial341
dc.publisherCambridge Univ Press
dc.rights.accessRightsrestricted access
dc.subject.cdu514.7
dc.subject.keywordR*-structure
dc.subject.keywordprojective parallelism
dc.subject.keywordbundle of linear frames
dc.subject.keywordbundle of projective frames
dc.subject.keywordthree-web
dc.subject.keywordfunctorial connection
dc.subject.keyworddifferential invariants
dc.subject.keywordequivalence problem
dc.subject.ucmGeometría diferencial
dc.subject.unesco1204.04 Geometría Diferencial
dc.titleDifferential invariants of R ∗-structures
dc.typejournal article
dc.volume.number119
dcterms.referencesD. BERNARD. Sur la geometrie differentiel des G-structures. Ann. Inst. Fourier, Orenoble 10 (1960), 151-270. W. BLASHKE. Einfuhrung in die Geometrie der waben (Birkhauser-Verlag, 1955). P. L. GARCIA PEREZ and J. MUNOZ MASQUE. Differential invariants on the bundles of linear frames. J. Geom. Phys. 7 (1990), 395-418. P. L. GARCIA PEREZ and J. MUNOZ MASQUE. Differential invariants on the bundles of (g-structures, Lecture Notes in Math. Vol. 1410 (Springer-Verlag, 1989), pp. 177-201. V.V.GOLDBERG. Theory of multicodimensional n+l-webs (Kluwer Academic Publishers, 1988). VICTOR GUILLEMIN. The integrability problem for G-structures. Trans. Amer. Math. Soc. 116 (1965), 544-560. S. KOBAYASHI. Transformation groups in differential geometry (Springer-Verlag, 1972). S. KOBAYASHI and K. NOMIZU. Foundations of differential geometry I (Wiley, 1963). J. MUNOZ MASQUE. Formes de structure et transformations infinitesimales de contact d'ordre superieur. C.R. Acad. Sc. Paris 298, Serie I, (1984), 185-188. S. STERNBERG. Lectures on differential geometry (Chelsea Publishing Company, 2nd ed. 1983
dspace.entity.typePublication
relation.isAuthorOfPublication2ee189aa-d1f1-45ca-a646-7433de5952b9
relation.isAuthorOfPublication.latestForDiscovery2ee189aa-d1f1-45ca-a646-7433de5952b9

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ValdesMo13.pdf
Size:
1.28 MB
Format:
Adobe Portable Document Format

Collections