Bayesian Analysis of Multiple Hypothesis Testing with Applications to Microarray Experiments
dc.contributor.author | Ausin, A. C. | |
dc.contributor.author | Gómez Villegas, Miguel Ángel | |
dc.contributor.author | González Pérez, Beatriz | |
dc.contributor.author | Rodríguez Bernal, María Teresa | |
dc.contributor.author | Salazar Mendoza, Isabel | |
dc.contributor.author | Sanz San Miguel, Luis | |
dc.date.accessioned | 2023-06-20T00:12:47Z | |
dc.date.available | 2023-06-20T00:12:47Z | |
dc.date.issued | 2011 | |
dc.description.abstract | Recently, the field of multiple hypothesis testing has experienced a great expansion, basically because of the new methods developed in the field of genomics. These new methods allow scientists to simultaneously process thousands of hypothesis tests. The frequentist approach to this problem is made by using different testing error measures that allow to control the Type I error rate at a certain desired level. Alternatively, in this article, a Bayesian hierarchical model based on mixture distributions and an empirical Bayes approach are proposed in order to produce a list of rejected hypotheses that will be declared significant and interesting for a more detailed posterior analysis. In particular, we develop a straightforward implementation of a Gibbs sampling scheme where all the conditional posterior distributions are explicit. The results are compared with the frequentist False Discovery Rate (FDR) methodology. Simulation examples show that our model improves the FDR procedure in the sense that it diminishes the percentage of false negatives keeping an acceptable percentage of false positives. | en |
dc.description.department | Depto. de Estadística e Investigación Operativa | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Educación, Formación Profesional y Deportes (España) | |
dc.description.sponsorship | Comunidad de Madrid | |
dc.description.sponsorship | Universidad Complutense de Madrid | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/15635 | |
dc.identifier.citation | Ausín, M. C., Gómez Villegas, M. Á., González Pérez, B. et al. «Bayesian Analysis of Multiple Hypothesis Testing with Applications to Microarray Experiments». Communications in Statistics - Theory and Methods, vol. 40, n.o 13, abril de 2011, pp. 2276-91. DOI.org (Crossref), https://doi.org/10.1080/03610921003778183. | |
dc.identifier.doi | 10.1080/03610921003778183 | |
dc.identifier.issn | 0361-0926 | |
dc.identifier.officialurl | https//doi.org/10.1080/03610921003778183 | |
dc.identifier.relatedurl | https://www.tandfonline.com/doi/full/10.1080/03610921003778183 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/42207 | |
dc.issue.number | 13 | |
dc.journal.title | Communications in statistics. Theory and methods | |
dc.language.iso | eng | |
dc.page.final | 2291 | |
dc.page.initial | 2276 | |
dc.publisher | Taylor & Francis | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 519.22 | |
dc.subject.keyword | Empirical Bayes methods | |
dc.subject.keyword | False discovery rate | |
dc.subject.keyword | Gibbs sampler | |
dc.subject.keyword | Mixture models | |
dc.subject.keyword | Multiple hypothesis testing | |
dc.subject.keyword | False Discovery Rate | |
dc.subject.keyword | Gene-Expression | |
dc.subject.keyword | Empirical Bayes | |
dc.subject.keyword | Model | |
dc.subject.keyword | Statistics & Probability | |
dc.subject.ucm | Estadística matemática (Matemáticas) | |
dc.subject.unesco | 1209 Estadística | |
dc.title | Bayesian Analysis of Multiple Hypothesis Testing with Applications to Microarray Experiments | en |
dc.type | journal article | |
dc.volume.number | 40 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | c8f6ba8b-2df4-4f4a-ac9a-76e7b061e41a | |
relation.isAuthorOfPublication | 10d9023b-cb9d-4ef7-bde2-9478081ca100 | |
relation.isAuthorOfPublication | f86b44a2-b55f-45e9-b7ee-ed44fc489557 | |
relation.isAuthorOfPublication | fb980ce9-69d1-4a58-8a9e-24bedc50b034 | |
relation.isAuthorOfPublication | 64af750b-6141-441e-b18f-d2fcc9f2e7b4 | |
relation.isAuthorOfPublication.latestForDiscovery | 10d9023b-cb9d-4ef7-bde2-9478081ca100 |
Download
Original bundle
1 - 1 of 1