Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Analyzing and interpreting convolutional neural networks using latent space topology

dc.contributor.authorLópez González, Clara Isabel
dc.contributor.authorGómez Silva, María José
dc.contributor.authorBesada Portas, Eva
dc.contributor.authorPajares Martínsanz, Gonzalo
dc.date.accessioned2024-05-23T18:00:15Z
dc.date.available2024-05-23T18:00:15Z
dc.date.issued2024-08
dc.description.abstractThe development of explainability methods for Convolutional Neural Networks (CNNs), under the growing framework of explainable Artificial Intelligence (xAI) for image understanding, is crucial due to neural networks success in contrast with their black box nature. However, usual methods focus on image visualizations and are inadequate to analyze the encoded contextual information (that captures the spatial dependencies of pixels considering their neighbors), as well as to explain the evolution of learning across layers without degrading the information. To address the latter, this paper presents a novel explanatory method based on the study of the latent representations of CNNs through their topology, and supported by Topological Data Analysis (TDA). For each activation layer after a convolution, the pixel values of the activation maps along the channels are considered latent space points. The persistent homology of this data is summarized via persistence landscapes, called Latent Landscapes. This provides a global view of how contextual information is being encoded, its variety and evolution, and allows for statistical analysis. The applicability and effectiveness of our approach is demonstrated by experiments conducted with CNNs trained on distinct datasets: (1) two U-Net segmentation models on RGB and pseudo-multiband images (generated by considering vegetation indices) from the agricultural benchmark CRBD were evaluated, in order to explain the difference in performance; and (2) a VGG-16 classification network on CIFAR-10 (RGB) was analyzed, showing how the information evolves within the network. Moreover, comparisons with state-of-the-art methods (Grad-CAM and occlusion) prove the consistency and validity of our proposal. It offers novel insights into the decision making process and helps to compare how models learn.
dc.description.departmentDepto. de Ingeniería de Software e Inteligencia Artificial (ISIA)
dc.description.departmentSección Deptal. de Arquitectura de Computadores y Automática (Físicas)
dc.description.facultyFac. de Informática
dc.description.facultyFac. de Ciencias Físicas
dc.description.fundingtypeAPC financiada por la UCM
dc.description.refereedTRUE
dc.description.sponsorshipComunidad Autónoma de Madrid
dc.description.sponsorshipMinisterio de Ciencia e Innovación (España)
dc.description.sponsorshipEuropean Commission
dc.description.sponsorshipMinisterio de Universidades (España)
dc.description.statuspub
dc.identifier.citationLópez-González CI, Gómez-Silva MJ, Besada-Portas E, Pajares G. Analyzing and interpreting convolutional neural networks using latent space topology. Neurocomputing. 2024 May;593: 127806-19
dc.identifier.doi10.1016/j.neucom.2024.127806
dc.identifier.issn0925-2312
dc.identifier.officialurlhttps://doi.org
dc.identifier.relatedurlhttps://doi.org/10.1016/j.neucom.2024.127806
dc.identifier.relatedurlhttps://www.sciencedirect.com/science/article/pii/S0925231224005770
dc.identifier.urihttps://hdl.handle.net/20.500.14352/104388
dc.journal.titleNeurocomputing
dc.language.isoeng
dc.page.final127806-13
dc.page.initial127806-1
dc.publisherElsevier
dc.relation.projectIDinfo:eu-repo/grantAgreement/CAM/PRICIT/Y2020/TCS-6420//Hacia un sistema Integral para la Alerta y Gestión de BLOOMs de cianobacterias en aguas continentales/IA-GES-BLOOM-CM
dc.relation.projectIDinfo:eu-repo/grantAgreement/MCIN/AEI/10.13039/501100011033/EU/PRTR/TED2021-130123B-I00//Más allá del uso de tecnologías digitales en blooms de cianobacterias: gestión inteligente de cianobacterias mediante el uso de gemelos digitales y computación en el borde/SMART-BLOOMS
dc.relation.projectIDinfo:eu-repo/grantAgreement/MCIN/PEICTI/PID2021-127648OB-C33/ES/Cooperación de vehículos de superficie y aéreos para aplicaciones de inspección en entornos cambiantes/INSERTION
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.cdu004.8
dc.subject.cdu004.85
dc.subject.cdu004.932
dc.subject.cdu004.032.26
dc.subject.keywordConvolutional eural networks (CNNs)
dc.subject.keywordExplainable artificial intelligence
dc.subject.keywordTopological data analysis
dc.subject.keywordPersistence landscapes
dc.subject.keywordLatent representation
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco1203.17 Informática
dc.titleAnalyzing and interpreting convolutional neural networks using latent space topology
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number593
dspace.entity.typePublication
relation.isAuthorOfPublication779a7137-78a8-46a7-81e0-58b8bd5f1748
relation.isAuthorOfPublication0acc96fe-6132-45c5-ad71-299c9dcb6682
relation.isAuthorOfPublication878e090e-a59f-4f17-b5a2-7746bed14484
relation.isAuthorOfPublication.latestForDiscovery779a7137-78a8-46a7-81e0-58b8bd5f1748

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Analyzing_and_interpreting_CNN_using_latent_space_topology_LG_ClaraI.pdf
Size:
4.36 MB
Format:
Adobe Portable Document Format

Collections