Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Noncommutative spacetime symmetries: Twist versus covariance

dc.contributor.authorRuiz Ruiz, Fernando
dc.contributor.authorGracia Bondía, José Mariano
dc.contributor.authorLizzi, Fedele
dc.contributor.authorVitale, Patrizia
dc.date.accessioned2023-06-20T10:41:28Z
dc.date.available2023-06-20T10:41:28Z
dc.date.issued2006-07
dc.description© 2006 The American Physical Society. The authors are grateful to V. Gayral, G. Marmo and C. Moreno for discussions. JMG-B acknowledges support from MEC, Spain, through a ‘Ramón y Cajal’ contract. Partial support from CICyT and UCM-CAM, Spain, through grants No. FIS2005-02309, 910770, and from the ‘‘Progetto di Ricerca di Interesse Nazionale‘‘, Italy, is also acknowledged.
dc.description.abstractWe prove that the Moyal product is covariant under linear affine spacetime transformations. From the covariance law, by introducing an (x,Theta)-space where the spacetime coordinates and the noncommutativity matrix components are on the same footing, we obtain a noncommutative representation of the affine algebra, its generators being differential operators in (x,Theta)-space. As a particular case, the Weyl Lie algebra is studied and known results for Weyl invariant noncommutative field theories are rederived in a nutshell. We also show that this covariance cannot be extended to spacetime transformations generated by differential operators whose coefficients are polynomials of order larger than 1. We compare our approach with the twist deformed enveloping algebra description of spacetime transformations.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMEC
dc.description.sponsorshipCICYT
dc.description.sponsorshipUCM-CAM
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/24921
dc.identifier.doi10.1103/PhysRevD.74.025014
dc.identifier.issn1550-7998
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevD.74.025014
dc.identifier.relatedurlhttp://journals.aps.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51004
dc.issue.number2
dc.journal.titlePhysical Review D
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectIDFIS2005-02309
dc.relation.projectID910770
dc.rights.accessRightsopen access
dc.subject.cdu53
dc.subject.keywordGravity
dc.subject.keywordDimensions
dc.subject.keywordGeometry
dc.subject.keywordSpaces
dc.subject.ucmFísica (Física)
dc.subject.unesco22 Física
dc.titleNoncommutative spacetime symmetries: Twist versus covariance
dc.typejournal article
dc.volume.number74
dcterms.references[1] D. Colladay and V. A. Kostelecky´, Phys. Rev. D 58, 116002 (1998). [2] A. Iorio and T. Sy´kora, Int. J. Mod. Phys. A 17, 2369 (2002); R. Jackiw and S.-Y. Pi, Phys. Rev. Lett. 88, 111603 (2002); L. Alvarez-Gaume´ and M. A. Va´zquez- Mozo, Nucl. Phys. B668, 293 (2003). [3] S. M. Carroll, J. A. Harvey, V. A. Kostelecky´, C.D. Lane, and T. Okamoto, Phys. Rev. Lett. 87, 141601 (2001). [4] A. A. Bichl, J. M. Grimstrup, H. Grosse, E. Kraus, L. Popp, M. Schweda, and R. Wulkenhaar, Eur. Phys. J. C 24, 165 (2002). [5] C. Gonera, P. Kosinski, P. Maslanka, and S. Giller, Phys. Rev. D 72, 067702 (2005); Phys. Lett. B 622, 192 (2005). [6] R. Oeckl, Nucl. Phys. B581, 559 (2000). [7] M. Chaichian, P. P. Kulish, K. Nishijima, and A. Tureanu, Phys. Lett. B 604, 98 (2004). [8] J. Wess, hep-th/0408080. [9] P. Matlock, Phys. Rev. D 71, 126007 (2005). [10] F. Lizzi, S. Vaidya, and P. Vitale, Phys. Rev. D 73, 125020 (2006). [11] P. Aschieri, C. Blohmann, M. Dimitrijevic, F. Meyer, P. Schupp, and J. Wess, Class. Quant. Grav. 22, 3511 (2005). [12] D.V. Vassilevich, Mod. Phys. Lett. A 21, 1279 (2006); P. Aschieri, M. Dimitrijevic, F. Meyer, S. Schraml, and J. Wess, hep-th/0603024; J. Zahn, Phys. Rev. D 73, 105005 (2006); M. Chaichian and A. Tureanu, Phys. Lett. B 637, 199 2006). [13] M. A. Rieffel, Deformation Quantization for Actions of Rd, Memoirs Amer. Math. Soc. Vol. 506 (Providence, RI, USA, 1993). [14] R. Estrada, J. M. Gracia-Bondı´a, and J. C. Várilly, J. Math. Phys. (N.Y.) 30, 2789 (1989). [15] S. Gutt and J. Rawnsley, J. Geom. Phys. 29, 347 (1999). [16] F.W. Hehl, J. D. McCrea, E.W. Mielke, and Y. Ne’eman, Phys. Rep. 258, 1 (1995). [17] S. Majid, Foundations of Quantum Group Theor (Cambridge University Press, Cambridge, 1995). [18] Expressions for the ___-derivative terms in these generators have been searched for in the past. See M. Chaichian, K. Nishijima, and A. Tureanu, Phys. Lett. B 633, 129 (2006) for an approach to find what we now understand to be M_Θμγ M__μγ. [19] F. Lizzi, R. Szabo, and A. Zampini, J. High Energy Phys. 08 (2001) 032. [20] A. Stern and A. Pinzul, Int. J. Mod. Phys. A 20, 5871 (2005). [21] N. Seiberg and E. Witten, J. High Energy Phys. 09 (1999) 032. [22] N. Seiberg, J. High Energy Phys. 06 (2003) 010. [23] For the twist approach, this was first considered in M. Ihl and C. Saemann, J. High Energy Phys. 01 (2006) 065; See also Banerjee, C. Lee and S. Siwach, hep-th/0511205. [24] M. Dubois-Violette, A. Kriegl, Y. Maeda, and P.W. Michor, Prog. Theor. Phys. Suppl. 144, 54 (2001). GRACIA BONDI´A et al. PHYSICAL REVIEW D 74, 025014 (2006)
dspace.entity.typePublication
relation.isAuthorOfPublication00879a8b-f834-4645-adb9-01e259407707
relation.isAuthorOfPublication4611585c-835f-40db-abda-4ba14f1a1811
relation.isAuthorOfPublication.latestForDiscovery00879a8b-f834-4645-adb9-01e259407707

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ruiz FR06libre.pdf
Size:
144.26 KB
Format:
Adobe Portable Document Format

Collections