Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Conic geometry and autocalibration from two images

dc.contributor.authorRonda Prieto, José Ignacio
dc.contributor.authorValdés Morales, Antonio
dc.date.accessioned2023-06-20T10:33:26Z
dc.date.available2023-06-20T10:33:26Z
dc.date.issued2007-06
dc.description.abstractWe show how the classical theory of projective conics provides new insights and results on the problem of 3D reconstruction from two images taken with uncalibrated cameras. The close relationship between Kruppa equations and Poncelet's Porism is investigated, leading, in particular, to a closed-form geometrically meaningful parameterization of the set of Euclidean reconstructions compatible with two images taken with cameras with constant intrinsic parameters and known pixel shape. An experiment with real images, showing the applicability of the method, is included.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Educación y Ciencia
dc.description.sponsorshipComunidad de Madrid
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20247
dc.identifier.doi10.1007/s10851-007-0011-z
dc.identifier.issn0924-9907 (Print) 1573-7683 (Online)
dc.identifier.officialurlhttp://link.springer.com/content/pdf/10.1007%2Fs10851-007-0011-z
dc.identifier.relatedurlhttp://www.springer.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50501
dc.issue.number2
dc.journal.titleJournal of Mathematical Imaging and Vision
dc.language.isoeng
dc.page.final149
dc.page.initial135
dc.publisherSpringer
dc.relation.projectIDTIN2004-07860 (Medusa)
dc.relation.projectIDS-0505/TIC-0223 (Pro-Multidis)
dc.rights.accessRightsrestricted access
dc.subject.cdu514
dc.subject.cdu004.8
dc.subject.keywordcamera autocalibration
dc.subject.keywordconic geometry
dc.subject.keywordKruppa configuration
dc.subject.keywordPoncelet's Porism
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.ucmGeometría
dc.subject.unesco1203.04 Inteligencia Artificial
dc.subject.unesco1204 Geometría
dc.titleConic geometry and autocalibration from two images
dc.typejournal article
dc.volume.number28
dcterms.referencesBougnoux, S.: From projective to Euclidean space under any practical situation, a criticism of self-calibration. In: Sixth International Conference on Computer Vision, pp. 790–796, 1998 Hartley, R.: Estimation of Relative Camera Positions for Uncalibrated Cameras. Lecture Notes In Computer Science, vol. 588. Proceedings of the Second European Conference on Computer Vision, pp. 579–587, 1992 Hartley, R., Zisserman, A.: Multiple-View Geometry in Computer Vision. Cambridge Univ. Press, Cambridge (2000) Huang, C.-R., Chen, C.-S., Chung, P.-C.: An improved algorithm for two-image camera self-calibration and Euclidean structure recovery using absolute quadric. Pattern Recognit. 37(8), 1713–1722 (2004) Liu, J.S., Chuang, J.H.: Self-calibration with varying focal length from two images obtained by a stereo head. Pattern Recognit. 35, 2937–2948 (2002) Maybank, S., Faugeras, O.: A theory of self–calibration of a moving camera. Int. J. Comput. Vis. 8(2), 123–141 (1992) Newsam, G.N., Huynh, D.Q., Brooks, M.J., Pan, H.P.: Recovering unknown focal lengths in self-calibration: an essentially linear algorithm and degenerate configurations. In: ISPRS-Congress XXXI (B3), pp. 575–580, 1996 Nister, D., Schaffalitzky, F.: What do four Points in two calibrated images tell us about the epipoles? In: Pajdla, T., Matas, J. (Eds.) ECCV 2004, LNCS 3022, pp. 41–57, Springer Ponce, J., McHenry, K., Papadopoulo, T., Teillaud, M., Triggs, B.: On the absolute quadratic complex and its application to autocalibration. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, vol. I, pp. 780–787, San Diego, CA, June 2005 Quan, L.: Conic reconstruction and correspondence from two views. IEEE Trans. Pattern Anal. Mach. Intell. 18(2), 151–160 (1996) Semple, J.G., Kneebone, G.T.: Algebraic Projective Geometry. Oxford University Press, London (1998) Sturm, P.: Focal length calibration from two views: method and analysis of singular cases. Comput. Vis. Image Underst. 99(1), 58–95 (2005) Valdés, A., Ronda, J.I., Gallego, G.: The absolute line quadric and camera autocalibration. Int. J. Comput. Vis. 66(3), 283–303(2006)
dspace.entity.typePublication
relation.isAuthorOfPublication2ee189aa-d1f1-45ca-a646-7433de5952b9
relation.isAuthorOfPublication.latestForDiscovery2ee189aa-d1f1-45ca-a646-7433de5952b9

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ValdesMo05springer.pdf
Size:
2.01 MB
Format:
Adobe Portable Document Format

Collections