Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Combination of fuzzy control and reinforcement learning for wind turbine pitch control

dc.contributor.authorSierra-García, Jesús Enrique
dc.contributor.authorSantos Peñas, Matilde
dc.date.accessioned2024-12-09T14:49:05Z
dc.date.available2024-12-09T14:49:05Z
dc.date.issued2024-05-25
dc.description.abstractThe generation of the pitch control signal in a wind turbine (WT) is not straightforward due to the nonlinear dynamics of the system and the coupling of its internal variables; in addition, they are subjected to the uncertainty that comes from the random nature of the wind. Fuzzy logic has proved useful in applications with changing system parameters or where uncertainty is relevant as in this one, but the tuning of the fuzzy logic controller (FLC) parameters is neither straightforward nor an easy task. On the other hand, reinforcement learning (RL) allows systems to automatically learn, and this capability can be exploited to tune the FLC. In this work, a WT pitch control architecture that uses RL to tune the membership functions and scale the output of a fuzzy controller is proposed. The RL strategy calculates the fuzzy controller gains in order to reduce the output power error of the WT according to the wind speed. Different reward mechanisms based on the output power error have been considered. Simulation results with different wind profiles show that this architecture performs better (123.7 W) in terms of power errors than an FLC without RL (133.2 W) or a simpler PID (208.8 W). Even more, it provides a smooth response and outperforms other hybrid controllers such as RL-PID and radial basis function neural network control.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyInstituto de Tecnología del Conocimiento (ITC)
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationSierra-Garcia, J. E., & Santos, M. (2024). Combination of fuzzy control and reinforcement learning for wind turbine pitch control. Logic Journal of the IGPL, jzae054.
dc.identifier.doihttps://doi.org/10.1093/jigpal/jzae054
dc.identifier.officialurlhttps://academic.oup.com/jigpal/advance-article-abstract/doi/10.1093/jigpal/jzae054/7679974?login=false#no-access-message
dc.identifier.urihttps://hdl.handle.net/20.500.14352/112243
dc.issue.numberjzae054
dc.journal.titleLogic Journal of the IGPL
dc.language.isoeng
dc.publisherOxford Academics
dc.relation.projectIDPID2021-123543OB-C21
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsrestricted access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordWind energy
dc.subject.keywordWind turbines
dc.subject.keywordPitch control
dc.subject.keywordFuzzy logic
dc.subject.keywordIntelligent control
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco1203.04 Inteligencia Artificial
dc.titleCombination of fuzzy control and reinforcement learning for wind turbine pitch control
dc.typejournal article
dspace.entity.typePublication
relation.isAuthorOfPublication99cac82a-8d31-45a5-bb8d-8248a4d6fe7f
relation.isAuthorOfPublication.latestForDiscovery99cac82a-8d31-45a5-bb8d-8248a4d6fe7f

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
IGPL2024_Sierra_Santos_WT.pdf
Size:
2.96 MB
Format:
Adobe Portable Document Format

Collections