Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Reasoning and Knowledge Acquisition Framework for 5G Network Analytics

dc.contributor.authorSotelo Monge, Marco Antonio
dc.contributor.authorMaestre Vidal, Jorge
dc.contributor.authorGarcía Villalba, Luis Javier
dc.date.accessioned2023-06-18T00:04:53Z
dc.date.available2023-06-18T00:04:53Z
dc.date.issued2017-10-21
dc.description.abstractAutonomic self-management is a key challenge for next-generation networks. This paper proposes an automated analysis framework to infer knowledge in 5G networks with the aim to understand the network status and to predict potential situations that might disrupt the network operability. The framework is based on the Endsley situational awareness model, and integrates automated capabilities for metrics discovery, pattern recognition, prediction techniques and rule-based reasoning to infer anomalous situations in the current operational context. Those situations should then be mitigated, either proactive or reactively, by a more complex decision-making process. The framework is driven by a use case methodology, where the network administrator is able to customize the knowledge inference rules and operational parameters. The proposal has also been instantiated to prove its adaptability to a real use case. To this end, a reference network traffic dataset was used to identify suspicious patterns and to predict the behavior of the monitored data volume. The preliminary results suggest a good level of accuracy on the inference of anomalous traffic volumes based on a simple configuration.
dc.description.departmentDepto. de Ingeniería de Software e Inteligencia Artificial (ISIA)
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.sponsorshipUnión Europea. Horizonte 2020
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/67713
dc.identifier.doi10.3390/s17102405
dc.identifier.issn1424-8220
dc.identifier.officialurlhttps://doi.org/10.3390/s17102405
dc.identifier.relatedurlhttps://www.mdpi.com/1424-8220/17/10/2405
dc.identifier.urihttps://hdl.handle.net/20.500.14352/19224
dc.issue.number10
dc.journal.titleSensors
dc.language.isoeng
dc.page.initial2405
dc.publisherMDPI
dc.relation.projectIDSELFNET (671672)
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.keyword5G
dc.subject.keywordanalysis
dc.subject.keywordknowledge acquisition
dc.subject.keywordpattern recognition
dc.subject.keywordprediction
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.ucmInternet (Informática)
dc.subject.ucmRedes
dc.subject.unesco1203.04 Inteligencia Artificial
dc.subject.unesco3325 Tecnología de las Telecomunicaciones
dc.titleReasoning and Knowledge Acquisition Framework for 5G Network Analytics
dc.typejournal article
dc.volume.number17
dspace.entity.typePublication
relation.isAuthorOfPublication0f67f6b3-4d2f-4545-90e1-95b8d9f3e1f0
relation.isAuthorOfPublication.latestForDiscovery0f67f6b3-4d2f-4545-90e1-95b8d9f3e1f0

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Reasoning_and_Knowledge_Acquisition_Framework_for_.pdf
Size:
1.35 MB
Format:
Adobe Portable Document Format

Collections