Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Parallel Implementation of the CCSDS 1.2.3 Standard for Hyperspectral Lossless Compression

dc.contributor.authorBascones García, Daniel
dc.contributor.authorGonzález Calvo, Carlos
dc.contributor.authorMozos Muñoz, Daniel
dc.date.accessioned2023-06-18T00:04:43Z
dc.date.available2023-06-18T00:04:43Z
dc.date.issued2017-09-21
dc.description.abstractHyperspectral imaging is a technology which, by sensing hundreds of wavelengths per pixel, enables fine studies of the captured objects. This produces great amounts of data that require equally big storage, and compression with algorithms such as the Consultative Committee for Space Data Systems (CCSDS) 1.2.3 standard is a must. However, the speed of this lossless compression algorithm is not enough in some real-time scenarios if we use a single-core processor. This is where architectures such as Field Programmable Gate Arrays (FPGAs) and Graphics Processing Units (GPUs) can shine best. In this paper, we present both FPGA and OpenCL implementations of the CCSDS 1.2.3 algorithm. The proposed paralellization method has been implemented on the Virtex-7 XC7VX690T, Virtex-5 XQR5VFX130 and Virtex-4 XC2VFX60 FPGAs, and on the GT440 and GT610 GPUs, and tested using hyperspectral data from NASA’s Airborne Visible Infra-Red Imaging Spectrometer (AVIRIS). Both approaches fulfill our real-time requirements. This paper attempts to shed some light on the comparison between both approaches, including other works from existing literature, explaining the trade-offs of each one.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/67653
dc.identifier.doi10.3390/rs9100973
dc.identifier.issn2072-4292
dc.identifier.officialurlhttps://doi.org/10.3390/rs9100973
dc.identifier.relatedurlhttps://www.mdpi.com/2072-4292/9/10/973
dc.identifier.urihttps://hdl.handle.net/20.500.14352/19221
dc.issue.number10
dc.journal.titleRemote Sensing
dc.language.isoeng
dc.page.initial973
dc.publisherMDPI
dc.relation.projectIDREADAR (TIN2013-40968-P)
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.keywordhyperspectral image compression
dc.subject.keywordCCSDS 1.2.3 standard
dc.subject.keywordparallel computing
dc.subject.keywordreconfigurable hardware
dc.subject.keywordfield-programmable gate arrays (FPGAs)
dc.subject.keywordGPUs
dc.subject.keywordcomparison
dc.subject.ucmProgramación de ordenadores (Informática)
dc.subject.ucmHardware
dc.subject.unesco1203.23 Lenguajes de Programación
dc.titleParallel Implementation of the CCSDS 1.2.3 Standard for Hyperspectral Lossless Compression
dc.typejournal article
dc.volume.number9
dspace.entity.typePublication
relation.isAuthorOfPublication7091b4d5-39d3-464a-be38-0863f757e2c9
relation.isAuthorOfPublication7888cab2-e944-4a9d-aa87-90e483db5a05
relation.isAuthorOfPublication4c67f647-780c-4c6a-84dd-5962fb0a6260
relation.isAuthorOfPublication.latestForDiscovery7888cab2-e944-4a9d-aa87-90e483db5a05

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
c0a71ad876016c9a7510f6b86697352c2bbe.pdf
Size:
1.4 MB
Format:
Adobe Portable Document Format

Collections