Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Coulomb dissociation of N-20,N-21

dc.contributor.authorFraile Prieto, Luis Mario
dc.date.accessioned2023-06-18T06:55:43Z
dc.date.available2023-06-18T06:55:43Z
dc.date.issued2016-06-30
dc.description©2016 American Physical Society. Artículo publicado por más de 10 autores. This work was supported in part by GSI (F&E, DR-ZUBE), Bundesministerium fur Bildung und Forschung (BMBF) (06DR134I, 05P09CRFN5, 05P12RDFN8, and 05P15RDFN1), the Hemholtz Association Germany through the Nuclear Astrophysics Virtual Institute (NAVI, Grant No. VH-VI-417), the Helmholtz Association Detector Technology and Systems Platform, the Spanish Research funding agency under projects FPA2012-32443, FPA2013-41267-P, and FPA2013-47831-C2-1-P, the Swedish Research Council, HIC for FAIR and the TU Darmstadt-GSI cooperation contract, the Portuguese FCT project PTDC/FIS/103902/2008, UK STFC under grants ST/E500651/1 and ST/F011989/1, US NSF Grant No. 1415656, and US DOE Grant No. DE-FG02-08ER41533.
dc.description.abstractNeutron-rich light nuclei and their reactions play an important role in the creation of chemical elements. Here, data from a Coulomb dissociation experiment on N-20,N-21 are reported. Relativistic N-20,N-21 ions impinged on a lead target and the Coulomb dissociation cross section was determined in a kinematically complete experiment. Using the detailed balance theorem, the N-19(n,gamma)N-20 and N-20(n,gamma)N-21 excitation functions and thermonuclear reaction rates have been determined. The N-19(n,gamma)N-20 rate is up to a factor of 5 higher at T < 1 GK with respect to previous theoretical calculations, leading to a 10% decrease in the predicted fluorine abundance.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.sponsorshipGSI (FE, DR-ZUBE)
dc.description.sponsorshipBundesministerium fur Bildung und Forschung (BMBF)
dc.description.sponsorshipHelmholtz Association Detector Technology and Systems Platform
dc.description.sponsorshipHemholtz Association Germany through Nuclear Astrophysics Virtual Institute (NAVI)
dc.description.sponsorshipSwedish Research Council
dc.description.sponsorshipHIC for FAIR
dc.description.sponsorshipTU Darmstadt-GSI
dc.description.sponsorshipPortuguese FCT project
dc.description.sponsorshipUK STFC
dc.description.sponsorshipUS NSF
dc.description.sponsorshipUS DOE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/39075
dc.identifier.doi10.1103/PhysRevC.93.065807
dc.identifier.issn2469-9985
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevC.93.065807
dc.identifier.relatedurlhttp://journals.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24604
dc.issue.number6
dc.journal.titlePhysical review C
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectIDFPA2013-41267-P
dc.relation.projectIDFPA2012-32443
dc.relation.projectIDFPA2013-47831-C2-1-P
dc.relation.projectID06DR134I
dc.relation.projectID05P09CRFN5
dc.relation.projectID05P12RDFN8
dc.relation.projectID05P15RDFN1
dc.relation.projectIDVH-VI-417
dc.relation.projectIDPTDC/FIS/103902/2008
dc.relation.projectIDST/E500651/1
dc.relation.projectIDST/F011989/1
dc.relation.projectID1415656
dc.relation.projectIDDE-FG02-08ER41533
dc.rights.accessRightsopen access
dc.subject.cdu539.1
dc.subject.keywordR-Process nucleosynthesis
dc.subject.keywordRelativistic heavy ions
dc.subject.keywordReferences
dc.subject.keywordDetector
dc.subject.keywordElements
dc.subject.keywordNuclei
dc.subject.keywordGraphs
dc.subject.keywordTables
dc.subject.keywordStars
dc.subject.keywordLight.
dc.subject.ucmFísica nuclear
dc.subject.unesco2207 Física Atómica y Nuclear
dc.titleCoulomb dissociation of N-20,N-21
dc.typejournal article
dc.volume.number93
dcterms.references1. E. M. Burbidge, G. R. Burbidge, W. A. Fowler, and F. Hoyle, Rev. Mod. Phys. 29, 547 (1957). 2. K. Takahashi, J. Witti, and H.-T. Janka, Astron. Astrophys. 286, 857 (1994). 3. T. Sasaqui, T. Kajino, G. J. Mathews, K. Otsuki, and T. Nakamura, Astrophys. J. 634, 1173 (2005). 4. R. Reifarth, C. Lederer, and F. Käppeler, J. Phys. G: Nucl. Part. Phys. 41, 053101 (2014). 5. M. Terasawa, K. Sumiyoshi, T. Kajino, G. J. Mathews, and I. Tanihata, Astrophys. J. 562, 470 (2001). 6. G. Baur, C. Bertulani, and H. Rebel, Nucl. Phys. A 458, 188 (1986). 7. S. G. Altstadt, T. Adachi, Y. Aksyutina, J. Alcantara, H. Alvarez-Pol et al., Nucl. Data Sheets 120, 197 (2014). 8. C. Caesar, J. Simonis, T. Adachi, Y. Aksyutina, J. Alcantara et al. (R3B Collaboration), Phys. Rev. C 88, 034313 (2013). 9. M. Heine, S. Typel, M.-R. Wu, T. Adachi, Y. Aksyutina et al., arXiv:1604.05832. 10. R. Thies, A. Heinz, T. Adachi, Y. Aksyutina, J. Alcantara-Núñes et al. (R3B Collaboration), Phys. Rev. C 93, 054601 (2016). 11. H. Geissel, P. Armbruster, K. H. Behr, A. Brünle, K. Burkard et al., Nucl. Instrum. Methods Phys. Res., Sect. B 70, 286 (1992). 12. J. Alcaraz, B. Alpat, G. Ambrosi, P. Azzarello, R. Battiston et al., Nucl. Instrum. Methods Phys. Res., Sect. A 593, 376 (2008). 13. V. Metag, R. Fischer, W. Kühn, R. Mühlhans, R. Novotny et al., Nucl. Phys. A 409, 331 (1983). 14. J. Cub, G. Stengel, A. Grünschloß, K. Boretzky, T. Aumann et al., Nucl. Instrum. Methods Phys. Res., Sect. A 402, 67 (1998). 15. K. Mahata, H. Johansson, S. Paschalis, H. Simon, and T. Aumann, Nucl. Instrum. Methods Phys. Res., Sect. A 608, 331 (2009). 16. T. Blaich, T. Elze, H. Emling, H. Freiesleben, K. Grimm et al., Nucl. Instrum. Methods Phys. Res., Sect. A 314, 136 (1992). 17. K. Boretzky, A. Grünschloß, S. Ilievski, P. Adrich, T. Aumann et al. (LAND Collaboration), Phys. Rev. C 68, 024317 (2003). 18. D. Sohler, M. Stanoiu, Z. Dombrádi, F. Azaiez, B. A. Brown et al., Phys. Rev. C 77, 044303 (2008). 19. G. Audi, A. Wapstra, and C. Thibault, Nucl. Phys. A 729, 337 (2003), the 2003 NUBASE and Atomic Mass Evaluations. 20. M. Wang, G. Audi, A. Wapstra, F. Kondev, M. MacCormick et al., Chin. Phys. C 36, 1603 (2012). 21. S. Typel and G. Baur, Phys. Rev. C 64, 024601 (2001). 22. C. Angulo, M. Arnould, M. Rayet, P. Descouvemont, D. Baye et al., Nucl. Phys. A 656, 3 (1999). 23. C. Rolfs and W. Rodney, Cauldrons in the Cosmos: Nuclear Astrophysics, Theoretical Astrophysics series (University of Chicago Press, Chicago, 1988). 24. A. L. Sallaska, C. Iliadis, A. E. Champange, S. Goriely, S. Starrfield et al., Astrophys. J. Suppl. Ser. 207, 18 (2013). 25. T. Rauscher, J. H. Applegate, J. J. Cowan, F.-K. Thielemann, and M. Wiescher, Astrophys. J. 429, 499 (1994). 26. B. Meyer, PoS (NIC XII), 096 (2012). 27. R. H. Cyburt, A. M. Amthor, R. Ferguson, Z. Meisel, K. Smith et al., Astrophys. J. Suppl. Ser. 189, 240 (2010). 28. B. S. Meyer, Phys. Rev. Lett. 89, 231101 (2002). 29. F. Käppeler, H. Beer, and K. Wisshak, Rep. Prog. Phys. 52, 945 (1989). 30. R. Reifarth, S. Altstadt, K. Göbel, T. Heftrich, M. Heil et al., J. Phys. Conf. Ser. 665, 012044 (2016).
dspace.entity.typePublication
relation.isAuthorOfPublicationec83106c-33f4-426c-afd6-68c5d859f9d4
relation.isAuthorOfPublication.latestForDiscoveryec83106c-33f4-426c-afd6-68c5d859f9d4

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Fraile Prieto 12 libre.pdf
Size:
927.11 KB
Format:
Adobe Portable Document Format

Collections