A new edge detection method based on global evaluation using fuzzy clustering

dc.contributor.authorFlores Vidal, Pablo Arcadio
dc.contributor.authorOlaso, Pablo
dc.contributor.authorGómez González, Daniel
dc.contributor.authorGuada, Carely
dc.date.accessioned2023-06-17T13:21:32Z
dc.date.available2023-06-17T13:21:32Z
dc.date.issued2019-03
dc.description.abstractTraditionally, the edge detection process requires one final step that is known as scaling. This is done to decide, pixel by pixel, if these will be selected as final edge or not. This can be considered as a local evaluation method that presents practical problems, since the edge candidate pixels should not be considered as independent. In this article, we propose a strategy to solve these problems through connecting pixels that form arcs, that we have called segments. To accomplish this, our edge detection algorithm is based on a more global evaluation inspired by actual human vision. Our paper further develops ideas first proposed in Venkatesh and Rosin (Graph Models Image Process 57(2):146–160, 1995). These segments contain visual features similar to those used by humans, which lead to better comparative results against humans. In order to select the relevant segments to be retained, we use fuzzy clustering techniques. Finally, this paper shows that this fuzzy clustering of segments presents a higher performance compared to other standard edge detection algorithms.en
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedFALSE
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades (España)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/54959
dc.identifier.citationFlores-Vidal PA, Olaso P, Gómez D, Guada C (2019) A new edge detection method based on global evaluation using fuzzy clustering. Soft Comput 23:1809–1821. https://doi.org/10.1007/s00500-018-3540-z
dc.identifier.doi10.1007/s00500-018-3540-z
dc.identifier.issn1432-7643
dc.identifier.officialurlhttps://doi.org/10.1007/s00500-018-3540-z
dc.identifier.relatedurlhttps://link.springer.com/article/10.1007/s00500-018-3540-z
dc.identifier.urihttps://hdl.handle.net/20.500.14352/13224
dc.issue.number6
dc.journal.titleSoft Computing
dc.language.isoeng
dc.page.final1821
dc.page.initial1809
dc.relation.projectIDTIN2015-66471-P
dc.rights.accessRightsopen access
dc.subject.cdu519.7
dc.subject.keywordEdge detection
dc.subject.keywordGlobal evaluation
dc.subject.keywordSupervised classification
dc.subject.keywordFuzzy clustering
dc.subject.keywordEdge segments
dc.subject.ucmCibernética matemática
dc.subject.ucmTeoría de conjuntos
dc.subject.unesco1207.03 Cibernética
dc.subject.unesco1201.02 Teoría Axiomática de Conjuntos
dc.titleA new edge detection method based on global evaluation using fuzzy clusteringen
dc.typejournal article
dc.volume.number23
dspace.entity.typePublication
relation.isAuthorOfPublication881ba82f-e783-4e7e-a1b6-dded36681497
relation.isAuthorOfPublication4dcf8c54-8545-4232-8acf-c163330fd0fe
relation.isAuthorOfPublication.latestForDiscovery881ba82f-e783-4e7e-a1b6-dded36681497

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Flores1_preprint.pdf
Size:
2.46 MB
Format:
Adobe Portable Document Format

Collections