Propiedades (BB)n y topologías en P(nE)
dc.book.title | Contribuciones matemáticas. Homenaje al profesor Enrique Outerelo Domínguez | |
dc.contributor.author | Martínez Ansemil, José María | |
dc.contributor.author | Blasco Contreras, Fernando | |
dc.contributor.author | Ponte Miramontes, María Del Socorro | |
dc.date.accessioned | 2023-06-20T13:40:16Z | |
dc.date.available | 2023-06-20T13:40:16Z | |
dc.date.issued | 2004 | |
dc.description.abstract | Properties (BB)n, n = 2, 3, ... on a locally convex space (see the definition below) have been recently introduced ([10]). They are interesting, among other things, in connection with the study of natural topologies on spaces of polynomials, multilinear and holomorphic mappings. As it is proved in [1] there are Fr´echet spaces with the (BB)2 property but without the (BB)3 property. Here, for a given n = 3, ... we get an space without the property (BB)n+1 and study an equivalent condition for that space to have the (BB)n property | en |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/23757 | |
dc.identifier.isbn | 84-7491-767-0 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/53312 | |
dc.language.iso | spa | |
dc.page.final | 60 | |
dc.page.initial | 53 | |
dc.page.total | 406 | |
dc.publication.place | Madrid | |
dc.publisher | Editorial Complutense | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 512 | |
dc.subject.keyword | Tensor product | |
dc.subject.keyword | Spaces of polynomials. | |
dc.subject.ucm | Álgebra | |
dc.subject.unesco | 1201 Álgebra | |
dc.title | Propiedades (BB)n y topologías en P(nE) | en |
dc.type | book part | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | e94d6c20-a1ea-4d41-aa71-df8bbd1ad67d | |
relation.isAuthorOfPublication | 67a29a58-69bf-4013-9eef-059313b4a915 | |
relation.isAuthorOfPublication.latestForDiscovery | 67a29a58-69bf-4013-9eef-059313b4a915 |
Download
Original bundle
1 - 1 of 1