Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Nuevas estrategias de compactación y transfección de DN-RNA en terapia génica

Loading...
Thumbnail Image

Official URL

Full text at PDC

Publication date

2017

Defense date

23/06/2017

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Universidad Complutense de Madrid
Citations
Google Scholar

Citation

Abstract

La Terapia Génica pretende tratar enfermedades hereditarias o adquiridas, a nivel molecular, bien reparando posibles daños del DNA celular, mediante la inserción de plásmidos de DNA (pDNA) en el citoplasma de las células dañadas, o bloqueando (silenciando) la función patogénica de algún gen mediante la inserción de RNAs pequeños de interferencia (small interferring RNA o siRNA). Entre los distintos métodos para transfectar ácidos nucleicos al interior celular, los sistemas autoagregados coloidales y/o supramoleculares se han revelado en los últimos tiempos como una alternativa plausible a los vectores víricos, habitualmente utilizados en el pasado. En particular, los lípidos catiónicos (CLs) o aniónicos (ALs), las NPs inorgánicas magnéticas o no magnéticas, ciclos supramoleculares (calixarenos CXs o pilararenos PLs) o las ciclodextrinas polianfifílicas (paCDs) son capaces de compactar DNA mediante una interacción electrostática superficial entrópicamente dirigida, y transfectarlo al interior de las células dañadas. Sin embargo, a pesar de todo lo que ya se conoce de este proceso, quedan todavía ciertos problemas por resolver, como los bajos niveles de transfección celular y la relativamente alta citotoxicidad de estos vectores en entornos celulares. Además, se sabe poco acerca del proceso de liberación del ácido nucleico una vez el vector ha traspasado la membrana plasmática, por lo que se tiene escaso o nulo control sobre el potencial de un determinado sistema vehiculizador como agente de transfección in vitro y, finalmente, in vivo. Es por ello que se está dedicando actualmente una especial atención dentro de este campo de investigación a intentar entender cómo se libera el agente terapéutico en el interior de la célula y cuáles son las barreras fisiológicas que puede encontrarse en su camino hacia el núcleo. Sin duda, conseguir el objetivo de poder curar enfermedades con nuevos protocolos de terapia génica pasa por tener un profundo conocimiento y control sobre ambas etapas del proceso de transfección: la primera, centrada en una buena compactación y transporte del ácido nucleico a través de la membrana, y la segunda, dirigida a la liberación del material genético en el entorno celular adecuado...
Gene therapy aims to treat hereditary or acquired diseases at the molecular level, either by repairing possible damages of cellular DNA, by inserting DNA plasmids (pDNA) into the cytoplasm of damaged cells, or by blocking (silencing) the pathogenic function of some gene by insertion of small interfering RNAs (small interfering RNA or siRNA). Among the different methods for transfecting nucleic acids into the cellular interior, colloidal and / or supramolecular self-aggregating systems have recently been revealed as a plausible alternative to viral vectors, commonly used in the past. In particular, cationic (CLs) or anionic (ALs) lipids, inorganic magnetic or non-magnetic NPs, supramolecular cycles (calixarenes CXs or pillararenes PLs) or polyamphiphilic cyclodextrins (paCDs) are capable of compacting DNA by an entropically driven surface electrostatic interaction, and transfected into the damaged cells. However, in spite of all that is known of this process, there are still certain problems to be solved, such as the low levels of cellular transfection and the relatively high cytotoxicity of these vectors in cellular environments. In addition, little is known about the process of nucleic acid release once the vector has passed through the plasma membrane, whereby there is little or no control over the potential of a given carrier system as an in vitro transfection agent and, finally, in vivo. It is for this reason that a special attention is now being devoted to this field of research in trying to understand how the therapeutic agent is released inside the cell and what are the physiological barriers that can be found on its way to the nucleus. Undoubtedly, achieving the goal of being able to cure diseases with new gene therapy protocols requires deep knowledge and control of both stages of the transfection process: the first, focused on good compaction and transport of the nucleic acid through the membrane, and the second, aimed at the release of the genetic material in the appropriate cellular environment...

Research Projects

Organizational Units

Journal Issue

Description

Tesis inédita de la Universidad Complutense de Madrid, Facultad de Ciencias Químicas, Departamento de Química Física I, leída el 23-06-2017

Keywords

Collections