Explicit constructions of dense common hypercyclic subspaces
dc.contributor.author | Seoane Sepúlveda, Juan Benigno | |
dc.date.accessioned | 2023-06-20T10:33:09Z | |
dc.date.available | 2023-06-20T10:33:09Z | |
dc.date.issued | 2007 | |
dc.description.abstract | We give an explicit construction of a dense infinite dimensional vector space of hypercyclic vectors for the weighted backward shift T-lambda (vertical bar lambda vertical bar > 1). We also develop a technique to construct common hypercyclic vectors for countable families of these operators. The techniques developed here do not rely on the Baire category theorem or any kind of existence proof, as do most approaches to this problem. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.faculty | Instituto de Matemática Interdisciplinar (IMI) | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/20077 | |
dc.identifier.doi | 10.2977/prims/1201011786 | |
dc.identifier.issn | 0034-5318 | |
dc.identifier.officialurl | http://www.kurims.kyoto-u.ac.jp/~prims/pdf/43-2/43-2-17.pdf | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/50464 | |
dc.issue.number | 2 | |
dc.journal.title | Publications of the Research Institute for Mathematical Sciences | |
dc.language.iso | eng | |
dc.page.final | 384 | |
dc.page.initial | 373 | |
dc.publisher | European Mathematical Society | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 517.98 | |
dc.subject.keyword | Hypercyclic subspaces | |
dc.subject.keyword | Weighted shift | |
dc.subject.keyword | Common hypercyclic vectors | |
dc.subject.ucm | Análisis funcional y teoría de operadores | |
dc.title | Explicit constructions of dense common hypercyclic subspaces | |
dc.type | journal article | |
dc.volume.number | 43 | |
dcterms.references | E. Abakumov and J. Gordon, Common hypercyclic vectors for multiples of backward shift, J. Funct. Anal. 200 (2003),no. 2, 494–504. R. M. Aron, J. B. Seoane-Sepulveda and A. Weber, Chaos on function spaces, Bull.Austral. Math. Soc. 71 (2005), no. 3,411–415. J. P. Bes, Invariant manifolds of hypercyclic vectors for the real scalar case, Proc. Amer.Math. Soc. 127 (1999), no.6, 1801–1804. G. Godefroy and J. H. Shapiro, Operators with dense,invariant, cyclic vector manifolds,J. Funct. Anal. 98 (1991), no. 2, 229–269. S. Grivaux, Construction of operators with prescribed behaviour, Arch. Math. (Basel)81 (2003), no. 3, 291–299. M. Gonzalez, F. Leon-Saavedra and A. Montes-Rodrıguez, Semi-Fredholm theory: hypercyclic and supercyclic subspaces,Proc. London Math. Soc. (3) 81 (2000), no. 1,169–189. F. Leon-Saavedra and A. Montes-Rodrıguez, Spectral theory and hypercyclic subspaces,Trans. Amer. Math. Soc. 353 (2001), no. 1, 247–267 (electronic). A. Montes-Rodr´ıguez, Banach spaces of hypercyclic vectors, Michigan Math. J. 43 (1996), no. 3, 419–436. A. Montes-Rodrıguez and H. N. Salas, Supercyclic subspaces: spectral theory and weighted shifts, Adv. Math. 163 (2001),no. 1, 74–134. Supercyclic subspaces, Bull. London Math. Soc. 35 (2003),no. 6, 721–737. S. Rolewicz, On orbits of elements, Studia Math. 32 (1969), 17–22. H. N. Salas, A hypercyclic operator whose adjoint is also hypercyclic, Proc. Amer. Math.Soc. 112 (1991), no. 3, 765–770. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | e85d6b14-0191-4b04-b29b-9589f34ba898 | |
relation.isAuthorOfPublication.latestForDiscovery | e85d6b14-0191-4b04-b29b-9589f34ba898 |
Download
Original bundle
1 - 1 of 1