Entropy solutions for nonlinear degenerate problems
dc.contributor.author | Carrillo Menéndez, José | |
dc.date.accessioned | 2023-06-20T16:53:35Z | |
dc.date.available | 2023-06-20T16:53:35Z | |
dc.date.issued | 1999 | |
dc.description.abstract | We consider a class of elliptic-hyperbolic degenerate equations g(u) - Delta b(u) + div phi (u) = f with Dirichlet homogeneous boundary conditions and a class of elliptic-parabolic-hyperbolic degenerate equations g(u)(t) - Delta b(u) + div phi (u) = f with homogeneous Dirichlet conditions and initial conditions. Existence of entropy solutions for both problems is proved for nondecreasing continuous functions g and b vanishing at zero and for a continuous vectorial function phi satisfying rather general conditions. Comparison and uniqueness of entropy solutions are proved for g and b continuous and nondecreasing and for phi continuous. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/15594 | |
dc.identifier.doi | 10.1007/s002050050152 | |
dc.identifier.issn | 0003-9527 | |
dc.identifier.officialurl | http://www.springerlink.com/content/ejne9t55g06xmybb/fulltext.pdf | |
dc.identifier.relatedurl | http://www.springerlink.com | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/57350 | |
dc.issue.number | 4 | |
dc.journal.title | Archive for rational mechanics and analysis | |
dc.language.iso | eng | |
dc.page.final | 361 | |
dc.page.initial | 269 | |
dc.publisher | Springer | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 519.7 | |
dc.subject.keyword | Parabolic equations | |
dc.subject.keyword | uniqueness | |
dc.subject.ucm | Ecuaciones diferenciales | |
dc.subject.unesco | 1202.07 Ecuaciones en Diferencias | |
dc.title | Entropy solutions for nonlinear degenerate problems | |
dc.type | journal article | |
dc.volume.number | 147 | |
dcterms.references | H.W. Alt & S. Luckhaus, Quasi-linear elliptic-parabolic differential equations, Math. Z. 183 (1983), 311.341. C. Bardos, A.Y. Leroux & J. C. Nedelec, First order quasilinear equations with boundary conditions, Comm. in P.D.E. 4 (1979), 1017.1034. Ph. Benilan, Equations d'_evolution dans un espace de Banach quelconque et applications, Th_ese d'_etat, Orsay (1972). Ph. B_enilan & F. Bouhsiss, Un contre exemple dans le cadre des _equations hyperboliques paraboliques d_eg_en_er_ees, Publ. Math. Besanc_on, Analyse non lin_eaire 15 (1997), 123.126. Ph. B_enilan & R. Gariepy, Strong solutions in L1 of degenerate parabolic equations, J. Diff. Eqs. 119 (1995), 473.502. Ph. B_enilan & S.N. Kruzhkov, Quasilinear _rst-order equations with continuous nonlinearities, Russian Acad. Sci. Dokl. Math. 50 (1995), 391.396. Ph. B_enilan & H. Tour_e, Sur l'_equation g_en_erale us D '.u/xx − .u/x Cv. C.R. Acad. Sci. Paris 299, S_erie I (1984), 919.922. Ph. B_enilan & P. Wittbold, On mild and weak solutions of elliptic-parabolic problems, Adv. Diff. Eqs. (1996), 1053.1073. Ph. B_enilan & P. Wittbold, Sur un probl_eme parabolique elliptique, to appear. L. Boccardo & F. Murat, Remarques sur l'homog_en_eisation de certains probl_emes quasi-lin_eaires, Publications du Laboratoire d'analyse num_erique, Universit _e P. et M. Curie, C.N.R.S., vol. 2, fasc. 1, 1983, no enregistrement 83005. F. Bouchut & B. Perthame, Kruzhkov estimates for scalar conservation laws revisited, to appear. H. Br_ezis, Op_erateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland (1973). J.Carrillo, Unicit_e des solutions du type Kruzhkov pour des probl_emes elliptiques avec des termes de transport non lin_eaires, C. R. Acad. Sci. Paris 303, S_erie I, (1986), 189.192. J. Carrillo, On the uniqueness of the solution of the evolution dam problem, Nonlinear Anal. 22 (1994), 573.607. J. Carrillo, Entropy solutions for _rst order quasilinear equations with discontinuous nonlinearities in bounded domains, in preparation. J. Carrillo & P.Wittbold, Uniqueness of renormalized solutions of degenerate elliptic-parabolic problems, in preparation. M. G. Crandall, The semigroup approach to _rst order quasilinear equations in several spaces variables, Israel J. Math. 12 (1972), 108.122. M. G. Crandall & T. Liggett, Generation of semi-groups of nonlinear transformations in general Banach spaces, Amer. J. Math. 93 (1971), 265.298. J. I. Diaz & R. Kershner, On a nonlinear degenerate parabolic equation on _ltration or evaporation through a porous medium, J. Diff. Eqs. 69 (1987), 368.403. G. Gagneux & M. Madaune-Tort, Unicit_e des solutions faibles d'_equations de diffusion-convection C. R. Acad. Sci. Paris 318 S_erie I (1994), 919.924. D. Gilbarg & N. S. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag (1977). B. H. Gilding & L.A. Peletier, The Cauchy problem for an equation in the theory of in_ltration, Arch. Rational Mech. Anal. 61 (1976), 127.140. E. Giusti, Minimal surfaces and functions of bounded variation, Birkh¨auser (1984). E. Godlewski & P.A. Raviart, Hyperbolic systems of conservation laws, Math_ematques et applications Ellipses-Edition Marketing, (1990). | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 48ac980d-beb1-40b0-acec-caec3a109b1c | |
relation.isAuthorOfPublication.latestForDiscovery | 48ac980d-beb1-40b0-acec-caec3a109b1c |
Download
Original bundle
1 - 1 of 1