Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Mg–1Zn–1Ca alloy for biomedical applications. Influence of the secondary phases on the mechanical and corrosion behaviour

dc.contributor.authorPulido González, Nuria
dc.contributor.authorTorres, Belen
dc.contributor.authorGarcía Rodríguez, Sandra
dc.contributor.authorRodrigo, Pilar
dc.contributor.authorBonache, V
dc.contributor.authorHidalgo Manrique, P
dc.contributor.authorMohedano Sánchez, Marta
dc.contributor.authorRams, Joaquín
dc.date.accessioned2023-06-17T08:23:06Z
dc.date.available2023-06-17T08:23:06Z
dc.date.issued2020-03-24
dc.description.abstractAn as-cast Mg–1Zn–1Ca alloy has been soundly characterized to be used as a biodegradable material in biomedical applications. Ca and Zn additions have a great influence in the microstructure, mechanical properties and corrosion behaviour of Mg alloys. SEM examinations revealed that most of the Ca and Zn atoms form Mg2Ca and Ca2Mg6Zn3 precipitates, which distribute preferentially along the grain boundaries forming a continuous network of secondary phases. The results of nanoindentation tests show differences in hardness and elastic modulus between the α-Mg matrix and the secondary phases. The results of three-point bending tests shows that cracks propagate following the network formed by the intermetallic compounds at the grain boundaries (GBs). The evolved hydrogen after immersion in Hank’s solution of the alloy has been also estimated, showing a change in the corrosion mechanism after 160 h. The intermetallic compounds act as a barrier against corrosion, so that it progresses through the α-Mg matrix phase.
dc.description.departmentDepto. de Ingeniería Química y de Materiales
dc.description.facultyFac. de Ciencias Químicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipMinisterio de Educación
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/70947
dc.identifier.doi10.1016/j.jallcom.2020.154735
dc.identifier.issn0925-8388
dc.identifier.officialurlhttps://doi.org/10.1016/j.jallcom.2020.154735
dc.identifier.relatedurlhttps://www.sciencedirect.com/science/article/pii/S0925838820310987
dc.identifier.urihttps://hdl.handle.net/20.500.14352/6890
dc.journal.titleJournal of alloys and compounds
dc.language.isoeng
dc.page.initial154735
dc.publisherElsevier
dc.relation.projectIDPROFABRICAD (RTI2018-096391-B-C31-C33); (RYC-2017-21843).
dc.relation.projectIDADITIMAT-CM (S2018/NMT-4411)
dc.relation.projectIDgrant (15/03606)
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subject.cdu620
dc.subject.keywordMg-Zn-Ca alloys
dc.subject.keywordBiomaterials
dc.subject.keywordBiodegradable implants
dc.subject.keywordThree-point bending test
dc.subject.keywordNanoindentation
dc.subject.keywordCorrosion behaviour
dc.subject.ucmMateriales
dc.subject.unesco3312 Tecnología de Materiales
dc.titleMg–1Zn–1Ca alloy for biomedical applications. Influence of the secondary phases on the mechanical and corrosion behaviour
dc.typejournal article
dc.volume.number831
dcterms.referencesReferences [1] W. Li, S. Guan, J. Chen, J. Hu, S. Chen, L. Wang, S. Zhu Preparation and in vitro degradation of the composite coating with high adhesion strength on biodegradable Mg-Zn-Ca alloy Mater. Char., 62 (2011), pp. 1158-1165, 10.1016/j.matchar.2011.07.005 ArticleDownload PDFView Record in ScopusGoogle Scholar [2] M. Ali, M.A. Hussein, N. Al-Aqeeli Magnesium-based composites and alloys for medical applications: a review of mechanical and corrosion properties J. Alloys Compd., 792 (2019), pp. 1162-1190, 10.1016/j.jallcom.2019.04.080 ArticleDownload PDFView Record in ScopusGoogle Scholar [3] G. Song Control of biodegradation of biocompatable magnesium alloys Corrosion Sci., 49 (2007), pp. 1696-1701, 10.1016/j.corsci.2007.01.001 ArticleDownload PDFView Record in ScopusGoogle Scholar [4] H.R.B. Rad, M.H. Idris, M.R.A. Kadir, S. Farahany, A. Fereidouni, M.Y. Yahya Characterization and Corrosion Behavior of Biodegradable Mg-Ca and Mg-Ca-Zn Implant Alloys Appl. Mech. Mater. (2012), pp. 568-572 https://doi.org/10.4028/www.scientific.net/AMM.121-126.568 Google Scholar [5] M.P. Staiger, A.M. Pietak, J. Huadmai, G. Dias Magnesium and its alloys as orthopedic biomaterials: a review Biomaterials, 27 (2006), pp. 1728-1734, 10.1016/j.biomaterials.2005.10.003 ArticleDownload PDFGoogle Scholar [6] J. Chen, L. Tan, X. Yu, I.P. Etim, M. Ibrahim, K. Yang Mechanical properties of magnesium alloys for medical application: a review J. Mech. Behav. Biomed. Mater., 87 (2018), pp. 68-79, 10.1016/j.jmbbm.2018.07.022 ArticleDownload PDFView Record in ScopusGoogle Scholar [7] K. Gusieva, C.H.J. Davies, J.R. Scully, N. Birbilis Corrosion of magnesium alloys: the role of alloying Int. Mater. Rev., 60 (2015), pp. 169-194, 10.1179/1743280414Y.0000000046 View PDFView Record in ScopusGoogle Scholar [8] X. Gu, Y. Zheng, Y. Cheng, S. Zhong, T. Xi In vitro corrosion and biocompatibility of binary magnesium alloys Biomaterials, 30 (2009), pp. 484-498, 10.1016/j.biomaterials.2008.10.021 ArticleDownload PDFView Record in ScopusGoogle Scholar [9] H.R. Bakhsheshi-Rad, E. Hamzah, A. Fereidouni-Lotfabadi, M. Daroonparvar, M.A.M.M. Yajid, M. Mezbahul-Islam, M. Kasiri-Asgarani, M. Medraj Microstructure and bio-corrosion behavior of Mg-Zn and Mg-Zn-Ca alloys for biomedical applications Mater. Corros., 65 (2014), pp. 1178-1187, 10.1002/maco.201307588 View PDFView Record in ScopusGoogle Scholar [10] D. Zander, N.A. Zumdick Influence of Ca and Zn on the microstructure and corrosion of biodegradable Mg-Ca-Zn alloys Corrosion Sci., 93 (2015), pp. 222-233, 10.1016/j.corsci.2015.01.027 ArticleDownload PDFView Record in ScopusGoogle Scholar [11] H. Li, Q. Peng, X. Li, K. Li, Z. Han, D. Fang Microstructures, mechanical and cytocompatibility of degradable Mg-Zn based orthopedic biomaterials Mater. Des., 58 (2014), pp. 43-51, 10.1016/j.matdes.2014.01.031 ArticleDownload PDFGoogle Scholar [12] H.R. Bakhsheshi-Rad, M.R. Abdul-Kadir, M.H. Idris, S. Farahany Relationship between the corrosion behavior and the thermal characteristics and microstructure of Mg-0.5Ca-xZn alloys Corrosion Sci., 64 (2012), pp. 184-197, 10.1016/j.corsci.2012.07.015 ArticleDownload PDFView Record in ScopusGoogle Scholar [13] S.A. Abdel-Gawad, M.A. Shoeib Corrosion studies and microstructure of Mg−Zn−Ca alloys for biomedical applications Surface. Interfac., 14 (2019), pp. 108-116, 10.1016/j.surfin.2018.11.011 ArticleDownload PDFView Record in ScopusGoogle Scholar [14] R. Radha, D. Sreekanth Insight of magnesium alloys and composites for orthopedic implant applications – a review J. Magnes. Alloy., 5 (2017), pp. 286-312, 10.1016/j.jma.2017.08.003 ArticleDownload PDFView Record in ScopusGoogle Scholar [15] L. Katsarou, K. Suresh, K.P.P. Rao, N. Hort, C. Blawert, C.L.L. Mendis, H. Dieringa Microstructure and properties of magnesium alloy Mg-1Zn-1Ca (Zx11) https://doi.org/10.1007/978-3-319-48185-2_78 (2015) Google Scholar [16] B. Zhang, Y. Hou, X. Wang, Y. Wang, L. Geng Mechanical properties, degradation performance and cytotoxicity of Mg-Zn-Ca biomedical alloys with different compositions Mater. Sci. Eng. C, 31 (2011), pp. 1667-1673, 10.1016/j.msec.2011.07.015 ArticleDownload PDFGoogle Scholar [17] S.M. Baek, H.K. Park, J.I. Yoon, J. Jung, J.H. Moon, S.G. Lee, J.H. Kim, T.S. Kim, S. Lee, N.J. Kim, H.S. Kim Effect of secondary phase particles on the tensile behavior of Mg-Zn-Ca alloy Mater. Sci. Eng., 735 (2018), pp. 288-294, 10.1016/j.msea.2018.08.050 ArticleDownload PDFView Record in ScopusGoogle Scholar [18] H.X. Wang, S.K. Guan, X. Wang, C.X. Ren, L.G. Wang In vitro degradation and mechanical integrity of Mg-Zn-Ca alloy coated with Ca-deficient hydroxyapatite by the pulse electrodeposition process Acta Biomater., 6 (2010), pp. 1743-1748, 10.1016/j.actbio.2009.12.009 ArticleDownload PDFView Record in ScopusGoogle Scholar [19] D.W.H. Kim, B.C. Suh, M.S. Shim, J.H. Bae, D.W.H. Kim, N.J. Kim Texture evolution in Mg-Zn-Ca alloy sheets Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 44 (2013), pp. 2950-2961, 10.1007/s11661-013-1674-2 View PDFView Record in ScopusGoogle Scholar [20] Y. Ortega, T. Leguey, R. Pareja Tensile fracture behavior of aging hardened Mg-1Ca and Mg-1Ca-1Zn alloys Mater. Lett., 62 (2008), pp. 3893-3895, 10.1016/j.matlet.2008.05.021 ArticleDownload PDFView Record in ScopusGoogle Scholar [21] X. Gao, S.M. Zhu, B.C. Muddle, J.F. Nie Precipitation-hardened Mg-Ca-Zn alloys with superior creep resistance Scripta Mater., 53 (2005), pp. 1321-1326, 10.1016/j.scriptamat.2005.08.035 ArticleDownload PDFView Record in ScopusGoogle Scholar [22] M. Bamberger, G. Levi, J.B. Vander Sande Precipitation hardening in Mg-Ca-Zn alloys Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 37 (2006), pp. 481-487, 10.1007/s11661-006-0019-9 View PDFView Record in ScopusGoogle Scholar [23] N. Li, Y. Zheng Novel magnesium alloys developed for biomedical application: a review J. Mater. Sci. Technol., 29 (2013), pp. 489-502, 10.1016/j.jmst.2013.02.005 ArticleDownload PDFView Record in ScopusGoogle Scholar [24] K.P. Rao, K. Suresh, Y.V.R.K. Prasad, C. Dharmendra, N. Hort, H. Dieringa High temperature strength and hot working technology for As-cast Mg-1Zn-1Ca (ZX11) alloy Metals, 7 (2017), 10.3390/met7100405 View PDFGoogle Scholar [25] Y. Jang, Z. Tan, C. Jurey, Z. Xu, Z. Dong, B. Collins, Y. Yun, J. Sankar Understanding corrosion behavior of Mg-Zn-Ca alloys from subcutaneous mouse model: effect of Zn element concentration and plasma electrolytic oxidation Mater. Sci. Eng. C, 48 (2015), pp. 28-40, 10.1016/j.msec.2014.11.029 ArticleDownload PDFView Record in ScopusGoogle Scholar [26] H. Ibrahim, A.D. Klarner, B. Poorganji, D. Dean, A.A. Luo, M. Elahinia Microstructural, mechanical and corrosion characteristics of heat-treated Mg-1.2Zn-0.5Ca (wt%) alloy for use as resorbable bone fixation material J. Mech. Behav. Biomed. Mater., 69 (2017), pp. 203-212, 10.1016/j.jmbbm.2017.01.005 ArticleDownload PDFView Record in ScopusGoogle Scholar [27] R.C. Zeng, W.C. Qi, H.Z. Cui, F. Zhang, S.Q. Li, E.H. Han In vitro corrosion of as-extruded Mg-Ca alloys-The influence of Ca concentration Corrosion Sci., 96 (2015), pp. 23-31, 10.1016/j.corsci.2015.03.018 ArticleDownload PDFView Record in ScopusGoogle Scholar [28] P.R. Cha, H.S. Han, G.F. Yang, Y.C.Y.Y.C. Kim, K.H. Hong, S.C. Lee, J.Y. Jung, J.P. Ahn, Y.C.Y.Y.C. Kim, S.Y. Cho, J.Y. Byun, K.S. Lee, S.J. Yang, H.K. Seok Biodegradability engineering of biodegradable Mg alloys: tailoring the electrochemical properties and microstructure of constituent phases Sci. Rep., 3 (2013), pp. 1-6, 10.1038/srep02367 View PDFView Record in ScopusGoogle Scholar [29] F. Naghdi, R. Mahmudi, J.Y. Kang, H.S. Kim Microstructure and high-temperature mechanical properties of the Mg-4Zn-0.5Ca alloy in the as-cast and aged conditions Mater. Sci. Eng., 649 (2016), pp. 441-448, 10.1016/j.msea.2015.10.011 ArticleDownload PDFView Record in ScopusGoogle Scholar [30] Y.Z. Du, X.G. Qiao, M.Y. Zheng, D.B. Wang, K. Wu, I.S. Golovin Effect of microalloying with Ca on the microstructure and mechanical properties of Mg-6 mass%Zn alloys Mater. Des., 98 (2016), pp. 285-293, 10.1016/j.matdes.2016.03.025 ArticleDownload PDFView Record in ScopusGoogle Scholar [31] Y. Sun, B. Zhang, Y. Wang, L. Geng, X. Jiao Preparation and characterization of a new biomedical Mg-Zn-Ca alloy Mater. Des., 34 (2012), pp. 58-64, 10.1016/j.matdes.2011.07.058 ArticleDownload PDFView Record in ScopusGoogle Scholar [32] V. Roche, G.Y. Koga, T.B. Matias, C.S. Kiminami, C. Bolfarini, W.J. Botta, R.P. Nogueira, A.M. Jorge Junior Degradation of biodegradable implants: the influence of microstructure and composition of Mg-Zn-Ca alloys J. Alloys Compd., 774 (2019), pp. 168-181, 10.1016/j.jallcom.2018.09.346 ArticleDownload PDFView Record in ScopusGoogle Scholar [33] Y.Z. Du, M.Y. Zheng, C. Xu, X.G. Qiao, K. Wu, X.D. Liu, G.J. Wang, X.Y. Lv Microstructures and mechanical properties of as-cast and as-extruded Mg-4.50Zn-1.13Ca (wt%) alloys Mater. Sci. Eng., 576 (2013), pp. 6-13, 10.1016/j.msea.2013.03.034 ArticleDownload PDFGoogle Scholar [34] F.R. Elsayed, N. Hort, M.A. Salgado Ordorica, K.U. Kainer Magnesium permanent mold castings optimization Mater. Sci. Forum, 690 (2011), pp. 65-68 https://doi.org/10.4028/www.scientific.net/msf.690.65 View Record in ScopusGoogle Scholar [35] R. Documents, S. Factor, P.F. Toughness Standard test method for plane-strain fracture toughness of metallic materials 1 Configurations, 90 (1997), pp. 1-31, 10.1520/E0399-09E02.2 View PDFGoogle Scholar [36] Z. Shi, A. Atrens An innovative specimen configuration for the study of Mg corrosion Corrosion Sci., 53 (2011), pp. 226-246, 10.1016/j.corsci.2010.09.016 ArticleDownload PDFView Record in ScopusGoogle Scholar [37] W. jian Li, K. kun Deng, X. Zhang, K. bo Nie, F. jun Xu Effect of ultra-slow extrusion speed on the microstructure and mechanical properties of Mg-4Zn-0.5Ca alloy Mater. Sci. Eng., 677 (2016), pp. 367-375, 10.1016/j.msea.2016.09.059 View PDFGoogle Scholar [38] M. Němec, A. Jäger, K. Tesař, V. Gärtnerová Influence of alloying element Zn on the microstructural, mechanical and corrosion properties of binary Mg-Zn alloys after severe plastic deformation Mater. Char., 134 (2017), pp. 69-75, 10.1016/j.matchar.2017.10.017 ArticleDownload PDFView Record in ScopusGoogle Scholar [39] T. Zhou, M. Yang, Z. Zhou, J. Hu, Z. Chen Microstructure and mechanical properties of rapidly solidified/powder metallurgy Mg-6Zn and Mg-6Zn-5Ca at room and elevated temperatures J. Alloys Compd., 560 (2013), pp. 161-166, 10.1016/j.jallcom.2013.01.066 ArticleDownload PDFView Record in ScopusGoogle Scholar [40] X. Luo, D. Fang, Q. Li, Y. Chai Microstructure and mechanical properties of an Mg-4.0Sm-1.0Ca alloy during thermomechanical treatment J. Rare Earths, 34 (2016), pp. 1134-1138, 10.1016/S1002-0721(16)60145-X ArticleDownload PDFView Record in ScopusGoogle Scholar [41] H.B. Li, G.C. Yao, Z.Q. Guo, Y.H. Liu, H.J. Yu, H.B. Ji Microstructure and Mechanical Properties of Mg-Li with Ca Addition, vol. 19 (2006), pp. 355-361 ArticleDownload PDFView Record in Scopus [42] A. Zakiyuddin, K. Lee Effect of a small addition of zinc and manganese to Mg-Ca based alloys on degradation behavior in physiological mediaEffect of a small addition of zinc and manganese to Mg-Ca based alloys on degradation behavior in physiological media J. Alloys Compd., 629 (2015), pp. 274-283, 10.1016/j.jallcom.2014.12.181 ArticleDownload PDFView Record in ScopusGoogle Scholar [43] K. Kubok, L. Litynska-Dobrzynska, A. Wierzbicka-Miernik, J. Wojewoda-Budka Age Hardening of Mg-3Zn-xCa (X = 0, 0.5, 1.0) wt.% Alloys, Mater. Sci. Forum (2013), pp. 481-485 https://doi.org/10.4028/www.scientific.net/MSF.765.481 View Record in ScopusGoogle Scholar [44] B. Langelier, A. Korinek, P. Donnadieu, S. Esmaeili Improving precipitation hardening behavior of Mg-Zn based alloys with Ce-Ca microalloying additions Mater. Char., 120 (2016), pp. 18-29, 10.1016/j.matchar.2016.08.010 ArticleDownload PDFView Record in ScopusGoogle Scholar [45] K. Oh-ishi, R. Watanabe, C.L. Mendis, K. Hono Age-hardening response of Mg-0.3 at.%Ca alloys with different Zn contents Mater. Sci. Eng., 526 (2009), pp. 177-184, 10.1016/j.msea.2009.07.027 ArticleDownload PDFView Record in ScopusGoogle Scholar [46] Q. Kang, H. Jiang, Y. Zhang, Z. Xu, H. Li, Z. Xia Effect of various Ca content on microstructure and fracture toughness of extruded Mg-2Zn alloys J. Alloys Compd., 742 (2018), pp. 1019-1030, 10.1016/j.jallcom.2017.11.276 ArticleDownload PDFView Record in ScopusGoogle Scholar [47] S. Zhang, X. Zhang, C. Zhao, J. Li, Y. Song, C. Xie, H. Tao, Y. Zhang, Y. He, Y. Jiang, Y. Bian Research on an Mg-Zn alloy as a degradable biomaterial Acta Biomater., 6 (2010), pp. 626-640, 10.1016/j.actbio.2009.06.028 ArticleDownload PDFView Record in ScopusGoogle Scholar [48] B. Homayun, A. Afshar Microstructure, mechanical properties, corrosion behavior and cytotoxicity of Mg-Zn-Al-Ca alloys as biodegradable materials J. Alloys Compd., 607 (2014), pp. 1-10, 10.1016/j.jallcom.2014.04.059 ArticleDownload PDFView Record in ScopusGoogle Scholar [49] Y. Lu, A.R. Bradshaw, Y.L. Chiu, I.P. Jones Effects of secondary phase and grain size on the corrosion of biodegradable Mg-Zn-Ca alloys Mater. Sci. Eng. C, 48 (2015), pp. 480-486, 10.1016/j.msec.2014.12.049 ArticleDownload PDFView Record in ScopusGoogle Scholar [50] F. Libonati, L. Vergani Bone toughness and crack propagation: an experimental study Procedia Eng., 74 (2014), pp. 464-467, 10.1016/j.proeng.2014.06.298 ArticleDownload PDFView Record in ScopusGoogle Scholar [51] V. Kaushik, R. Narasimhan, R.K. Mishra Experimental study of fracture behavior of magnesium single crystals Mater. Sci. Eng., 590 (2014), pp. 174-185, 10.1016/j.msea.2013.10.018 ArticleDownload PDFView Record in ScopusGoogle Scholar [52] H. Somekawa, T. Mukai Effect of grain refinement on fracture toughness in extruded pure magnesium Scripta Mater., 53 (2005), pp. 1059-1064, 10.1016/j.scriptamat.2005.07.001 ArticleDownload PDFView Record in ScopusGoogle Scholar [53] B. Kim, J. Do, S. Lee, I. Park In situ fracture observation and fracture toughness analysis of squeeze cast AZ51-xSn magnesium alloys Mater. Sci. Eng., 527 (2010), pp. 6745-6757, 10.1016/j.msea.2010.07.016 ArticleDownload PDFView Record in ScopusGoogle Scholar [54] Z.U. Rahman, K.M. Deen, W. Haider Controlling corrosion kinetics of magnesium alloys by electrochemical anodization and investigation of film mechanical properties Appl. Surf. Sci., 484 (2019), pp. 906-916, 10.1016/j.apsusc.2019.02.168 ArticleDownload PDFView Record in ScopusGoogle Scholar [55] Y. Song, D. Shan, R. Chen, F. Zhang, E.H. Han Biodegradable behaviors of AZ31 magnesium alloy in simulated body fluid Mater. Sci. Eng. C, 29 (2009), pp. 1039-1045, 10.1016/j.msec.2008.08.026 ArticleDownload PDFView Record in ScopusGoogle Scholar [56] B. Torres, E. Otero, J. Rams Surface & Coatings Technology Corrosion behavior of 316L stainless steel coatings on ZE41 magnesium alloy in chloride environments Surf. Coating. Technol., 378 (2019), p. 124994, 10.1016/j.surfcoat.2019.124994 View PDFGoogle Scholar [57] G. Galicia, N. Pébère, B. Tribollet, V. Vivier Local and global electrochemical impedances applied to the corrosion behaviour of an AZ91 magnesium alloy Corrosion Sci., 51 (2009), pp. 1789-1794, 10.1016/j.corsci.2009.05.005 ArticleDownload PDFView Record in ScopusGoogle Scholar [58] M. Mohedano, B.J.C. Luthringer, B. Mingo, F. Feyerabend, R. Arrabal, P.J. Sanchez-Egido, C. Blawert, R. Willumeit-Römer, M.L. Zheludkevich, E. Matykina Bioactive plasma electrolytic oxidation coatings on Mg-Ca alloy to control degradation behaviour Surf. Coating. Technol., 315 (2017), pp. 454-467, 10.1016/j.surfcoat.2017.02.050 ArticleDownload PDFView Record in ScopusGoogle Scholar [59] N.M. Chelliah, P. Padaikathan, R. Kumar Evaluation of electrochemical impedance and biocorrosion characteristics of as-cast and T4 heat treated AZ91 Mg-alloys in Ringer ’ s solution J. Magnes. Alloy., 7 (2019), pp. 134-143, 10.1016/j.jma.2019.01.005 ArticleDownload PDFView Record in ScopusGoogle Scholar [60] M. Erinc, W.H. Sillekens, R.G.T.M. Mannens, R.J. Werkhoven Applicability of existing magnesium alloys as biomedical implant materials Magnes. Technol. (2009), pp. 209-214, 10.1017/CBO9781107415324.004 View PDFGoogle Scholar [61] D. Song, G. Guo, J. Jiang, L. Zhang, A. Ma, X. Ma, J. Chen, Z. Cheng Hydrothermal synthesis and corrosion behavior of the protective coating on Mg-2Zn-Mn-Ca-Ce alloy Prog. Nat. Sci. Mater. Int., 26 (2016), pp. 590-599, 10.1016/j.pnsc.2016.11.002 ArticleDownload PDFView Record in ScopusGoogle Scholar [62] F. Zhang, A. Ma, D. Song, J. Jiang, F. Lu, L. Zhang, D. Yang, J. Chen Improving in-vitro biocorrosion resistance of Mg-Zn-Mn-Ca alloy in Hank’s solution through addition of cerium J. Rare Earths, 33 (2015), pp. 93-101, 10.1016/S1002-0721(14)60388-4 ArticleDownload PDFGoogle Scholar [63] C. Taltavull, Z. Shi, B. Torres, J. Rams, A. Atrens Influence of the chloride ion concentration on the corrosion of high-purity Mg, ZE41 and AZ91 in buffered Hank’s solution J. Mater. Sci. Mater. Med., 25 (2014), pp. 329-345, 10.1007/s10856-013-5087-y View PDFView Record in ScopusGoogle Scholar [64] N.I. Zainal Abidin, A.D.A. Atrens, D. Martin, A.D.A. Atrens Corrosion of high purity Mg, Mg2Zn0.2Mn, ZE41 and AZ91 in Hank’s solution at 37°C Corrosion Sci., 53 (2011), pp. 3542-3556, 10.1016/j.corsci.2011.06.030 ArticleDownload PDFView Record in ScopusGoogle Scholar [65] N.T. Kirkland, N. Birbilis, J. Walker, T. Woodfield, G.J. Dias, M.P. Staiger In-vitro dissolution of magnesium-calcium binary alloys: clarifying the unique role of calcium additions in bioresorbable magnesium implant alloys J. Biomed. Mater. Res. B Appl. Biomater., 95 (2010), pp. 91-100, 10.1002/jbm.b.31687 View PDFView Record in ScopusGoogle Scholar [67] X. Zhang, G. Yuan, L. Mao, J. Niu, P. Fu, W. Ding Effects of extrusion and heat treatment on the mechanical properties and biocorrosion behaviors of a Mg-Nd-Zn-Zr alloy J. Mech. Behav. Biomed. Mater., 7 (2012), pp. 77-86, 10.1016/j.jmbbm.2011.05.026 ArticleDownload PDFView Record in ScopusGoogle Scholar [68] Z. Li, X. Gu, S. Lou, Y. Zheng The development of binary Mg-Ca alloys for use as biodegradable materials within bone Biomaterials, 29 (2008), pp. 1329-1344, 10.1016/j.biomaterials.2007.12.021 ArticleDownload PDFView Record in ScopusGoogle Scholar [69] Y.F. Zheng, X.N. Gu, F. Witte, A. Eliezer Biodegradable metals Degrad. Implant Mater. (2012), pp. 93-109, 10.1007/978-1-4614-3942-4_5 9781461439 View PDFView Record in ScopusGoogle Scholar [70] S. Zhang, J. Li, Y. Song, C. Zhao, X. Zhang, C. Xie, Y. Zhang, H. Tao, Y. He, Y. Jiang, Y. Bian In vitro degradation, hemolysis and MC3T3-E1 cell adhesion of biodegradable Mg-Zn alloy Mater. Sci. Eng. C, 29 (2009), pp. 1907-1912, 10.1016/j.msec.2009.03.001 ArticleDownload PDFView Record in ScopusGoogle Scholar [71] D. Mei, S.V. Lamaka, J. Gonzalez, F. Feyerabend, R. Willumeit-Römer, M.L. Zheludkevich The role of individual components of simulated body fluid on the corrosion behavior of commercially pure Mg Corrosion Sci., 147 (2019), pp. 81-93, 10.1016/j.corsci.2018.11.011 ArticleDownload PDFView Record in ScopusGoogle Scholar [72] J. Wang, Y. Ma, S. Guo, W. Jiang, Q. Liu Effect of Sr on the microstructure and biodegradable behavior of Mg–Zn–Ca-Mn alloys for implant application Mater. Des., 153 (2018), pp. 308-316, 10.1016/j.matdes.2018.04.062 ArticleDownload PDFGoogle Scholar
dspace.entity.typePublication
relation.isAuthorOfPublication160ef5bd-2d04-4f6c-b028-cb7ce4cf8d38
relation.isAuthorOfPublication.latestForDiscovery160ef5bd-2d04-4f6c-b028-cb7ce4cf8d38

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
JALCOM-D-20.pdf
Size:
2.86 MB
Format:
Adobe Portable Document Format

Collections