Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A Stereovision Matching Strategy for Images Captured with Fish-Eye Lenses in Forest Environments

dc.contributor.authorHerrera, Pedro Javier
dc.contributor.authorPajares Martínsanz, Gonzalo
dc.contributor.authorGuijarro Mata-García, María
dc.contributor.authorRuz Ortiz, José Jaime
dc.contributor.authorCruz, Jesús M.
dc.date.accessioned2023-06-20T01:07:32Z
dc.date.available2023-06-20T01:07:32Z
dc.date.issued2011-01-31
dc.description.abstractWe present a novel strategy for computing disparity maps from hemispherical stereo images obtained with fish-eye lenses in forest environments. At a first segmentation stage, the method identifies textures of interest to be either matched or discarded. This is achieved by applying a pattern recognition strategy based on the combination of two classifiers: Fuzzy Clustering and Bayesian. At a second stage, a stereovision matching process is performed based on the application of four stereovision matching constraints: epipolar, similarity, uniqueness and smoothness. The epipolar constraint guides the process. The similarity and uniqueness are mapped through a decision making strategy based on a weighted fuzzy similarity approach, obtaining a disparity map. This map is later filtered through the Hopfield Neural Network framework by considering the smoothness constraint. The combination of the segmentation and stereovision matching approaches makes the main contribution. The method is compared against the usage of simple features and combined similarity matching strategies.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.departmentDepto. de Ingeniería de Software e Inteligencia Artificial (ISIA)
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/68481
dc.identifier.doi10.3390/s110201756
dc.identifier.issn1424-8220
dc.identifier.officialurlhttps://doi.org/10.3390/s110201756
dc.identifier.relatedurlhttps://www.mdpi.com/1424-8220/11/2/1756
dc.identifier.urihttps://hdl.handle.net/20.500.14352/43325
dc.issue.number2
dc.journal.titleSensors
dc.language.isoeng
dc.page.final1783
dc.page.initial1756
dc.publisherMDPI
dc.relation.projectIDDPI2009-14552-C02-01
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.keywordfish-eye stereovision matching
dc.subject.keywordfuzzy clustering
dc.subject.keywordBayesian classifier
dc.subject.keywordweighted fuzzy similarity
dc.subject.keywordHopfield neural networks
dc.subject.keywordtexture classification
dc.subject.keywordfish-eye lenses
dc.subject.keywordhemispherical forest images
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.ucmRedes
dc.subject.ucmSistemas expertos
dc.subject.unesco1203.04 Inteligencia Artificial
dc.titleA Stereovision Matching Strategy for Images Captured with Fish-Eye Lenses in Forest Environments
dc.typejournal article
dc.volume.number11
dspace.entity.typePublication
relation.isAuthorOfPublication878e090e-a59f-4f17-b5a2-7746bed14484
relation.isAuthorOfPublicationd5518066-7ea8-448c-8e86-42673e11a8ee
relation.isAuthorOfPublication59baddaa-b4d2-4f26-81a9-745602eb2b25
relation.isAuthorOfPublication.latestForDiscoveryd5518066-7ea8-448c-8e86-42673e11a8ee

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
sensors-11-01756.pdf
Size:
673.07 KB
Format:
Adobe Portable Document Format

Collections