Parameter-invariant second-order variational problems in one variable
dc.contributor.author | Muñoz Masqué, Jaime | |
dc.contributor.author | Pozo Coronado, Luis Miguel | |
dc.date.accessioned | 2023-06-20T17:06:09Z | |
dc.date.available | 2023-06-20T17:06:09Z | |
dc.date.issued | 1998 | |
dc.description.abstract | A projection is defined such that a second-order Lagrangian density factors through this projection module contact forms if and only if it is parameter invariant. In this way, a geometric interpretation of the parameter invariance conditions is obtained. The above projection is then used to prove the strict factorization of the Poincare-Cartan form attached to a parameter-invariant variational problem thus leading us to state the Hamilton-Cartan formalism, the complete description of symmetries and regularity for such problems. The case of the squared curvature Lagrangian in the plane is analysed especially. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | CICYT | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/17496 | |
dc.identifier.doi | 10.1088/0305-4470/31/29/014 | |
dc.identifier.issn | 0305-4470 | |
dc.identifier.officialurl | http://iopscience.iop.org/0305-4470/31/29/014/pdf/0305-4470_31_29_014.pdf | |
dc.identifier.relatedurl | http://iopscience.iop.org | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/57772 | |
dc.issue.number | 29 | |
dc.journal.title | Journal of physics A: Mathematical and general | |
dc.language.iso | eng | |
dc.page.final | 6242 | |
dc.page.initial | 6225 | |
dc.publisher | Iop science | |
dc.relation.projectID | PB95–0124. | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 514.7 | |
dc.subject.keyword | Second-order Lagrangian density | |
dc.subject.keyword | Parameter invariance | |
dc.subject.keyword | Poincare-Cartan form | |
dc.subject.keyword | Squared curvature Lagrangian | |
dc.subject.ucm | Geometría diferencial | |
dc.subject.unesco | 1204.04 Geometría Diferencial | |
dc.title | Parameter-invariant second-order variational problems in one variable | |
dc.type | journal article | |
dc.volume.number | 31 | |
dcterms.references | Abate M and Patrizio G 1994 Finsler Metrics—A Global Approach (Lecture Notes in Mathematics 1591)(New York: Springer) Atiyah M F and MacDonald I G 1969 Introduction to Commutative Algebra (Reading, MA: Addison-Wesley)[3] Bao D and Chern S S 1993 On a notable connection in Finsler geometry Houston J. Math. 19 135–80 Batlle C, Gomis J, Pons J M and Rom´an-Roy N 1988 Lagrangian and Hamiltonian constraints for secondorder singular Lagrangians J. Phys. A: Math. Gen. 21 2693–703 Blaschke W 1930 Vorlesungenuber Differentialgeometrie vol I 3rd edn (Berlin: Springer) Bryant R and Griffiths P 1986 Reduction for constrained variational problems and R k2ds Am. J. Math. 108 525–70 Constantelos G C 1984 On the Hamilton–Jacobi theory with derivatives of higher order Riv. Nuovo Cimento B 84 91–101 Giaquinta M and Hildebrandt S 1996 Calculus of Variations II: The Hamiltonian Formalism (Berlin: Springer) Godbillon C 1969 Geometrie Differentielle et Mecanique Analytique (Paris: Hermann) Goldschmidt H 1967 Integrability criteria for systems of non-linear partial differential equations J. Diff.Geom. 1 269–307 Goldschmidt H and Sternberg S 1973 The Hamilton–Cartan formalism in the calculus of variations Ann. Inst.Fourier 23 203–67 Grifone J 1972 Structure presque-tangente et connections II Ann. Inst. Fourier Grenoble 22 291–338 Guggenheimer H W 1963 Differential Geometry (New York:McGraw-Hill) | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 0124d449-632e-4dc8-9651-eb1975f330ab | |
relation.isAuthorOfPublication.latestForDiscovery | 0124d449-632e-4dc8-9651-eb1975f330ab |
Download
Original bundle
1 - 1 of 1