Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Application of Artificial Intelligence Techniques to Predict Survival in Kidney Transplantation: A Review

dc.contributor.authorDíez Sanmartín, Covadonga
dc.contributor.authorSarasa Cabezuelo, Antonio
dc.date.accessioned2023-06-17T09:12:45Z
dc.date.available2023-06-17T09:12:45Z
dc.date.issued2020-02-19
dc.description.abstractA key issue in the field of kidney transplants is the analysis of transplant recipients’ survival. By means of the information obtained from transplant patients, it is possible to analyse in which cases a transplant has a higher likelihood of success and the factors on which it will depend. In general, these analyses have been conducted by applying traditional statistical techniques, as the amount and variety of data available about kidney transplant processes were limited. However, two main changes have taken place in this field in the last decade. Firstly, the digitalisation of medical information through the use of electronic health records (EHRs), which store patients’ medical histories electronically. This facilitates automatic information processing through specialised software. Secondly, medical Big Data has provided access to vast amounts of data on medical processes. The information currently available on kidney transplants is huge and varied by comparison to that initially available for this kind of study. This new context has led to the use of other non-traditional techniques more suitable to conduct survival analyses in these new conditions. Specifically, this paper provides a review of the main machine learning methods and tools that are being used to conduct kidney transplant patient and graft survival analyses.
dc.description.departmentDepto. de Sistemas Informáticos y Computación
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/67620
dc.identifier.doi10.3390/jcm9020572
dc.identifier.issn2077-0383
dc.identifier.officialurlhttps://doi.org/10.3390/jcm9020572
dc.identifier.relatedurlhttps://www.mdpi.com/2077-0383/9/2/572
dc.identifier.urihttps://hdl.handle.net/20.500.14352/8404
dc.issue.number2
dc.journal.titleJournal of Clinical Medicine
dc.language.isoeng
dc.page.initial572
dc.publisherMDPI
dc.relation.projectIDTIN2017-88092 R
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.keywordartificial intelligence
dc.subject.keywordmachine learning
dc.subject.keywordsurvival
dc.subject.keywordkidney transplantation
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco1203.04 Inteligencia Artificial
dc.titleApplication of Artificial Intelligence Techniques to Predict Survival in Kidney Transplantation: A Review
dc.typejournal article
dc.volume.number9
dspace.entity.typePublication
relation.isAuthorOfPublication768e9865-e7a1-4ff7-8765-24f475180751
relation.isAuthorOfPublication.latestForDiscovery768e9865-e7a1-4ff7-8765-24f475180751

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Application_of_Artificial_Intelligence_Techniques_.pdf
Size:
1.4 MB
Format:
Adobe Portable Document Format

Collections