Experimental and theoretical studies on the formation of pure beta-phase polymorphs during fabrication of polyvinylidene fluoride membranes by cyclic carbonate solvents

dc.contributor.authorIsmail, Norafiqah
dc.contributor.authorEssalhi, Mohamed
dc.contributor.authorRahmati, Mahmoud
dc.contributor.authorCui, Zhaoliang
dc.contributor.authorKhayet Souhaimi, Mohamed
dc.contributor.authorTavajohi, Naser
dc.date.accessioned2023-06-17T09:09:39Z
dc.date.available2023-06-17T09:09:39Z
dc.date.issued2021-03-07
dc.descriptionWe appreciate the financial support from the Kempe Foundation and Bio4energy program, the Spanish Ministry of Economy and Competitiveness through its project CTM2015-65348-C2-2-R and the Spanish Ministry of Science, Innovation and Universities through its project RTI2018-096042-B-C22.
dc.description.abstractThe use of highly toxic solvents presents significant risks to both the environment and human health. Therefore, the adoption of green solvents will be crucial for achieving sustainable membrane production. This work reports the use of inexpensive environmentally friendly biobased and biodegradable cyclic carbonate solvents, namely ethylene carbonate (EC), propylene carbonate (PC), and butylene carbonate (BC), to fabricate polyvinylidene fluoride (PVDF) membranes. The solvent dependence of the phase inversion mechanisms, morphology, crystalline structures, and polymorphism of the prepared PVDF membranes were investigated. Polymorph analysis revealed that membrane fabrication in EC or PC yielded exclusively the beta-phase product, whereas PVDF membrane fabrication in BC yielded a mixture of alpha and beta phase material. The mechanism of beta-phase formation was investigated using molecular dynamics simulation and shown to depend on the extent of hydrogen bonding at the polymer-solvent interface. The PVDF membrane formed in EC exhibited the highest porosity and pure water permeability, and was therefore tested in direct contact membrane distillation (DCMD), exhibiting promising results in terms of permeate flux and salt rejection. These results suggest that large-scale production of piezoelectric PVDF membranes using green solvents should be practically feasible.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.sponsorshipKempe Foundation
dc.description.sponsorshipBio4energy program
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/66882
dc.identifier.doi10.1039/d1gc00122a
dc.identifier.issn1463-9262
dc.identifier.officialurlhttps://doi.org/10.1039/d1gc00122a
dc.identifier.relatedurlhttps://pubs.rsc.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/8300
dc.issue.number5
dc.journal.titleGreen chemistry
dc.language.isoeng
dc.page.final2147
dc.page.initial2130
dc.publisherRoyal Soc Chemistry
dc.relation.projectIDCTM2015-65348-C2-2-R
dc.relation.projectIDRTI2018-096042-B-C22
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu536
dc.subject.keywordChemistry
dc.subject.keywordMultidisciplinary
dc.subject.keywordGreen & Sustainable Science & Technology
dc.subject.ucmTermodinámica
dc.subject.unesco2213 Termodinámica
dc.titleExperimental and theoretical studies on the formation of pure beta-phase polymorphs during fabrication of polyvinylidene fluoride membranes by cyclic carbonate solvents
dc.typejournal article
dc.volume.number23
dspace.entity.typePublication
relation.isAuthorOfPublication8e32e718-0959-4e6c-9e04-891d3d43d640
relation.isAuthorOfPublication.latestForDiscovery8e32e718-0959-4e6c-9e04-891d3d43d640

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Khayet124libre+CC.pdf
Size:
6.53 MB
Format:
Adobe Portable Document Format

Collections