Uniform Continuity and a New Bornology for a Metric Space
| dc.contributor.author | Beer, Gerald | |
| dc.contributor.author | Garrido Carballo, María Isabel | |
| dc.contributor.author | Meroño Moreno, Ana Soledad | |
| dc.date.accessioned | 2024-02-08T16:06:59Z | |
| dc.date.available | 2024-02-08T16:06:59Z | |
| dc.date.issued | 2017 | |
| dc.description.abstract | In the context of functions between metric spaces, continuity is preserved by uniform convergence on the bornology of relatively compact subsets while Cauchy continuity is preserved under uniform convergence on the bornology of totally bounded subsets. We identify a new bornology for a metric space containing the bornology of Bourbaki bounded sets on which uniform convergence preserves uniform continuity. Further, for real-valued uniformly continuous functions, the function space is a ring (with respect to pointwise multiplication) if and only if the two bornologies agree. We show that Cauchy continuity is preserved by uniform convergence on compact subsets if and only if the domain space is complete, and that uniform continuity is preserved under uniform convergence on totally bounded subsets if and only if the domain space has UC completion. Finally, uniform continuity is preserved under uniform convergence on compact subsets if and only if the domain space is a UC-space. We prove a simple omnibus density result for Lipschitz functions within a larger class of continuous functions equipped with a topology of uniform convergence on a bornology and apply that to each of our three function classes. | en |
| dc.description.department | Depto. de Álgebra, Geometría y Topología | |
| dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
| dc.description.faculty | Fac. de Ciencias Matemáticas | |
| dc.description.faculty | Instituto de Matemática Interdisciplinar (IMI) | |
| dc.description.refereed | TRUE | |
| dc.description.sponsorship | Ministerio de Economía, Comercio y Empresa (España) | |
| dc.description.status | pub | |
| dc.identifier.citation | Beer, G., Garrido, M.I., Meroño, A.S.: Uniform Continuity and a New Bornology for a Metric Space. Set-Valued Var. Anal. 26, 49-65 (2018). https://doi.org/10.1007/s11228-017-0429-4 | |
| dc.identifier.doi | 10.1007/s11228-017-0429-4 | |
| dc.identifier.essn | 1877-0541 | |
| dc.identifier.issn | 1877-0533 | |
| dc.identifier.officialurl | https://doi.org/10.1007/s11228-017-0429-4 | |
| dc.identifier.relatedurl | https://link.springer.com/article/10.1007/s11228-017-0429-4 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14352/100532 | |
| dc.journal.title | Set-Valued and Variational Analysis | |
| dc.language.iso | eng | |
| dc.page.final | 65 | |
| dc.page.initial | 49 | |
| dc.publisher | Springer | |
| dc.relation.projectID | MTM2012-34341 | |
| dc.rights.accessRights | restricted access | |
| dc.subject.keyword | Continuous function | |
| dc.subject.keyword | Cauchy continuous function | |
| dc.subject.keyword | Uniformly continuous function | |
| dc.subject.keyword | Lipschitz function | |
| dc.subject.keyword | Ring of functions | |
| dc.subject.keyword | Bornology | |
| dc.subject.keyword | UC-space | |
| dc.subject.keyword | Relatively compact set | |
| dc.subject.keyword | Totally bounded set | |
| dc.subject.keyword | Bourbaki bounded set | |
| dc.subject.keyword | Infinitely nonuniformly isolated set | |
| dc.subject.ucm | Topología | |
| dc.subject.ucm | Análisis funcional y teoría de operadores | |
| dc.subject.ucm | Funciones (Matemáticas) | |
| dc.subject.unesco | 1202.10 Funciones de Variables Reales | |
| dc.subject.unesco | 1210.05 Topología General | |
| dc.title | Uniform Continuity and a New Bornology for a Metric Space | en |
| dc.type | journal article | |
| dc.type.hasVersion | VoR | |
| dc.volume.number | 26 | |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | d581a19d-4879-4fd7-b6a8-5c766ec13ba0 | |
| relation.isAuthorOfPublication | 272ad105-02a5-40c4-bc35-5bc93e9da06d | |
| relation.isAuthorOfPublication.latestForDiscovery | d581a19d-4879-4fd7-b6a8-5c766ec13ba0 |
Download
Original bundle
1 - 1 of 1

