Uniform Continuity and a New Bornology for a Metric Space

dc.contributor.authorBeer, Gerald
dc.contributor.authorGarrido Carballo, María Isabel
dc.contributor.authorMeroño Moreno, Ana Soledad
dc.date.accessioned2024-02-08T16:06:59Z
dc.date.available2024-02-08T16:06:59Z
dc.date.issued2017
dc.description.abstractIn the context of functions between metric spaces, continuity is preserved by uniform convergence on the bornology of relatively compact subsets while Cauchy continuity is preserved under uniform convergence on the bornology of totally bounded subsets. We identify a new bornology for a metric space containing the bornology of Bourbaki bounded sets on which uniform convergence preserves uniform continuity. Further, for real-valued uniformly continuous functions, the function space is a ring (with respect to pointwise multiplication) if and only if the two bornologies agree. We show that Cauchy continuity is preserved by uniform convergence on compact subsets if and only if the domain space is complete, and that uniform continuity is preserved under uniform convergence on totally bounded subsets if and only if the domain space has UC completion. Finally, uniform continuity is preserved under uniform convergence on compact subsets if and only if the domain space is a UC-space. We prove a simple omnibus density result for Lipschitz functions within a larger class of continuous functions equipped with a topology of uniform convergence on a bornology and apply that to each of our three function classes.en
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía, Comercio y Empresa (España)
dc.description.statuspub
dc.identifier.citationBeer, G., Garrido, M.I., Meroño, A.S.: Uniform Continuity and a New Bornology for a Metric Space. Set-Valued Var. Anal. 26, 49-65 (2018). https://doi.org/10.1007/s11228-017-0429-4
dc.identifier.doi10.1007/s11228-017-0429-4
dc.identifier.essn1877-0541
dc.identifier.issn1877-0533
dc.identifier.officialurlhttps://doi.org/10.1007/s11228-017-0429-4
dc.identifier.relatedurlhttps://link.springer.com/article/10.1007/s11228-017-0429-4
dc.identifier.urihttps://hdl.handle.net/20.500.14352/100532
dc.journal.titleSet-Valued and Variational Analysis
dc.language.isoeng
dc.page.final65
dc.page.initial49
dc.publisherSpringer
dc.relation.projectIDMTM2012-34341
dc.rights.accessRightsrestricted access
dc.subject.keywordContinuous function
dc.subject.keywordCauchy continuous function
dc.subject.keywordUniformly continuous function
dc.subject.keywordLipschitz function
dc.subject.keywordRing of functions
dc.subject.keywordBornology
dc.subject.keywordUC-space
dc.subject.keywordRelatively compact set
dc.subject.keywordTotally bounded set
dc.subject.keywordBourbaki bounded set
dc.subject.keywordInfinitely nonuniformly isolated set
dc.subject.ucmTopología
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.subject.ucmFunciones (Matemáticas)
dc.subject.unesco1202.10 Funciones de Variables Reales
dc.subject.unesco1210.05 Topología General
dc.titleUniform Continuity and a New Bornology for a Metric Spaceen
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number26
dspace.entity.typePublication
relation.isAuthorOfPublicationd581a19d-4879-4fd7-b6a8-5c766ec13ba0
relation.isAuthorOfPublication272ad105-02a5-40c4-bc35-5bc93e9da06d
relation.isAuthorOfPublication.latestForDiscoveryd581a19d-4879-4fd7-b6a8-5c766ec13ba0

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Uniform_Continuity.pdf
Size:
477.88 KB
Format:
Adobe Portable Document Format

Collections