On the Christoffel–Darboux formula for generalized matrix orthogonal polynomials

dc.contributor.authorÁlvarez Fernández, Carlos
dc.contributor.authorMañas Baena, Manuel Enrique
dc.date.accessioned2023-06-19T14:54:46Z
dc.date.available2023-06-19T14:54:46Z
dc.date.issued2014-10-01
dc.description©2014 Elsevier Inc. All rights reserved. MM thanks economical support from the Spanish “Ministerio de Economía y Competitividad” research project MTM2012-36732-C03-01, Ortogonalidad y aproximacion; Teoria y Aplicaciones.
dc.description.abstractWe obtain an extension of the Christoffel–Darboux formula for matrix orthogonal polynomials with a generalized Hankel symmetry, including the Adler-van Moerbeke generalized orthogonal polynomials
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/30968
dc.identifier.doi10.1016/j.jmaa.2014.03.094
dc.identifier.issn0022-247X
dc.identifier.officialurlhttp://dx.doi.org/10.1016/j.jmaa.2014.03.094
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/34736
dc.issue.number1
dc.journal.titleJournal of mathematical analysis and applications
dc.language.isoeng
dc.page.final247
dc.page.initial238
dc.publisherElsevier
dc.relation.projectIDMTM2012-36732-C03-01
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordGeneralized matrix orthogonal polynomials
dc.subject.keywordChristoffel–Darboux formula
dc.subject.keywordmultigradedHankel symmetry.
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleOn the Christoffel–Darboux formula for generalized matrix orthogonal polynomials
dc.typejournal article
dc.volume.number418
dcterms.references[1] M. Adler and P. van Moerbeke, Group factorization, moment matrices and Toda lattices, International Mathe- matical Research Notices 12 (1997) 556-572. [2] M. Adler and P. van Moerbeke, Generalized orthogonal polynomials, discrete KP and Riemann–Hilbert problems, Communications in Mathematical Physics 207 (1999) 589-620. [3] M. Adler and P. van Moerbeke, Darboux transforms on band matrices, weights and associated polynomials, Inter- national Mathematical Research Notices 18 (2001) 935-984. [4] M. Adler, P. van Moerbeke, and P. Vanhaecke, Moment matrices and multi-component KP, with applications to random matrix theory, Communications in Mathematical Physics 286 (2009) 1-38. [5] C. Alvarez-Fern ánndez, U. Fidalgo, and M. Mañas, The multicomponent 2D Toda hierarchy: generalized matrix orthogonal polynomials, multiple orthogonal polynomials and Riemann–Hilbert problems, Inverse Problems 26 (2010) 055009 (17 pp.) [6] C. Álvarez-Fern ández, U. Fidalgo, and M. Mañas, Multiple orthogonal polynomials of mixed type: Gauss-Borel factorization and the multi-component 2D Toda hierarchy, Advances in Mathematics 227 (2011) 1451-1525. [7] C. Alvarez-Fernández and M.Mañas, Orthogonal Laurent polynomials on the unit circle, extended CMV ordering and 2D Toda type integrable hierarchies, Advances in Mathematics 240 (2013) 132193. [8] M. J. Bergvelt and A. P. E. ten Kroode, Partitions, vertex operators constructions and multi- component KP equations, Pacific Journal of Mathematics 171 (1995) 23-88. [9] M. Cafasso, Matrix Biorthogonal Polynomials on the unit circle and the non-Abelian Ablowitz-Ladik hierarchy, Jounal of Physics A: Mathematical and Theoritical 42 (2009), 365211. [10] R. Cruz-Barroso and P. Gonz ález-Vera, A Christoffel–Darboux formula and a Favard’s theorem for Laurent or- thogonal polynomials on the unit circle, Journal of Computational and Applied Mathematics 179 (2005) ,157-173. [11] E. Daems and A. B. J. Kuijlaars, A Christoffel–Darboux formula for multiple orthogonal polynomials, Journal of Approximation Theory 130 (2004) 188-200. [12] E. Daems and A. B. J. Kuijlaars, Multiple orthogonal polynomials of mixed type and non- intersecting Brownian motions, Journal of Approximation Theory 146 (2007) 91-114. [13] A. S. Fokas, A. R. Its, and A. V. Kitaev, The isomonodromy approach to matrix models in 2D quatum gravity, Communications in Mathematical Physics (1992) 395-430. [14] M. Mañas, L. Martínez Alonso, and C. Alvarez-Fernandez, The multicomponent 2D Toda hierarchy: discrete flows and string equations, Inverse Problems 25 (2009) 065007 (31 pp). [15] M. Mañas and L. Martínez Alonso, The multicomponent 2D Toda hierarchy: dispersionless limit, Inverse Problems 25 (2009) 115020 (22 pp). [16] M. Mulase, Complete integrability of the Kadomtsev–Petviashvili equation, Advances in Mathematics 54 (1984) 57-66. [17] M. Sato, Soliton equations as dynamical systems on infinite dimensional Grassmann manifolds, Research Institute for Mathematical Sciences Kokyuroku 439 (1981) 30-46. [18] B. Simon, The Christoffel–Darboux Kernel, Proceedings of Symposia in Pure Mathematics 79:“Perspectives in Partial Differential Equations, Harmonic Analysis and Applications: A Volume in Honor of Vladimir G. Maz’ya’s 70th Birthday”, (2008) 295-336. arXiv:0806.1528 [19] K. Ueno and K. Takasaki, Toda lattice hierarchy, in Group Representations and Systems of Differential Equations, Advanced Studies in Pure Mathematics 4 (1984) 1-95.
dspace.entity.typePublication
relation.isAuthorOfPublication0d5b5872-7553-4b33-b0e5-085ced5d8f42
relation.isAuthorOfPublication.latestForDiscovery0d5b5872-7553-4b33-b0e5-085ced5d8f42

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
mañas.aleta2014.pdf
Size:
314.49 KB
Format:
Adobe Portable Document Format

Collections