Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On the Christoffel–Darboux formula for generalized matrix orthogonal polynomials

dc.contributor.authorÁlvarez Fernández, Carlos
dc.contributor.authorMañas Baena, Manuel Enrique
dc.date.accessioned2023-06-19T14:54:46Z
dc.date.available2023-06-19T14:54:46Z
dc.date.issued2014-10-01
dc.description©2014 Elsevier Inc. All rights reserved. MM thanks economical support from the Spanish “Ministerio de Economía y Competitividad” research project MTM2012-36732-C03-01, Ortogonalidad y aproximacion; Teoria y Aplicaciones.
dc.description.abstractWe obtain an extension of the Christoffel–Darboux formula for matrix orthogonal polynomials with a generalized Hankel symmetry, including the Adler-van Moerbeke generalized orthogonal polynomials
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/30968
dc.identifier.doi10.1016/j.jmaa.2014.03.094
dc.identifier.issn0022-247X
dc.identifier.officialurlhttp://dx.doi.org/10.1016/j.jmaa.2014.03.094
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/34736
dc.issue.number1
dc.journal.titleJournal of mathematical analysis and applications
dc.language.isoeng
dc.page.final247
dc.page.initial238
dc.publisherElsevier
dc.relation.projectIDMTM2012-36732-C03-01
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordGeneralized matrix orthogonal polynomials
dc.subject.keywordChristoffel–Darboux formula
dc.subject.keywordmultigradedHankel symmetry.
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleOn the Christoffel–Darboux formula for generalized matrix orthogonal polynomials
dc.typejournal article
dc.volume.number418
dcterms.references[1] M. Adler and P. van Moerbeke, Group factorization, moment matrices and Toda lattices, International Mathe- matical Research Notices 12 (1997) 556-572. [2] M. Adler and P. van Moerbeke, Generalized orthogonal polynomials, discrete KP and Riemann–Hilbert problems, Communications in Mathematical Physics 207 (1999) 589-620. [3] M. Adler and P. van Moerbeke, Darboux transforms on band matrices, weights and associated polynomials, Inter- national Mathematical Research Notices 18 (2001) 935-984. [4] M. Adler, P. van Moerbeke, and P. Vanhaecke, Moment matrices and multi-component KP, with applications to random matrix theory, Communications in Mathematical Physics 286 (2009) 1-38. [5] C. Alvarez-Fern ánndez, U. Fidalgo, and M. Mañas, The multicomponent 2D Toda hierarchy: generalized matrix orthogonal polynomials, multiple orthogonal polynomials and Riemann–Hilbert problems, Inverse Problems 26 (2010) 055009 (17 pp.) [6] C. Álvarez-Fern ández, U. Fidalgo, and M. Mañas, Multiple orthogonal polynomials of mixed type: Gauss-Borel factorization and the multi-component 2D Toda hierarchy, Advances in Mathematics 227 (2011) 1451-1525. [7] C. Alvarez-Fernández and M.Mañas, Orthogonal Laurent polynomials on the unit circle, extended CMV ordering and 2D Toda type integrable hierarchies, Advances in Mathematics 240 (2013) 132193. [8] M. J. Bergvelt and A. P. E. ten Kroode, Partitions, vertex operators constructions and multi- component KP equations, Pacific Journal of Mathematics 171 (1995) 23-88. [9] M. Cafasso, Matrix Biorthogonal Polynomials on the unit circle and the non-Abelian Ablowitz-Ladik hierarchy, Jounal of Physics A: Mathematical and Theoritical 42 (2009), 365211. [10] R. Cruz-Barroso and P. Gonz ález-Vera, A Christoffel–Darboux formula and a Favard’s theorem for Laurent or- thogonal polynomials on the unit circle, Journal of Computational and Applied Mathematics 179 (2005) ,157-173. [11] E. Daems and A. B. J. Kuijlaars, A Christoffel–Darboux formula for multiple orthogonal polynomials, Journal of Approximation Theory 130 (2004) 188-200. [12] E. Daems and A. B. J. Kuijlaars, Multiple orthogonal polynomials of mixed type and non- intersecting Brownian motions, Journal of Approximation Theory 146 (2007) 91-114. [13] A. S. Fokas, A. R. Its, and A. V. Kitaev, The isomonodromy approach to matrix models in 2D quatum gravity, Communications in Mathematical Physics (1992) 395-430. [14] M. Mañas, L. Martínez Alonso, and C. Alvarez-Fernandez, The multicomponent 2D Toda hierarchy: discrete flows and string equations, Inverse Problems 25 (2009) 065007 (31 pp). [15] M. Mañas and L. Martínez Alonso, The multicomponent 2D Toda hierarchy: dispersionless limit, Inverse Problems 25 (2009) 115020 (22 pp). [16] M. Mulase, Complete integrability of the Kadomtsev–Petviashvili equation, Advances in Mathematics 54 (1984) 57-66. [17] M. Sato, Soliton equations as dynamical systems on infinite dimensional Grassmann manifolds, Research Institute for Mathematical Sciences Kokyuroku 439 (1981) 30-46. [18] B. Simon, The Christoffel–Darboux Kernel, Proceedings of Symposia in Pure Mathematics 79:“Perspectives in Partial Differential Equations, Harmonic Analysis and Applications: A Volume in Honor of Vladimir G. Maz’ya’s 70th Birthday”, (2008) 295-336. arXiv:0806.1528 [19] K. Ueno and K. Takasaki, Toda lattice hierarchy, in Group Representations and Systems of Differential Equations, Advanced Studies in Pure Mathematics 4 (1984) 1-95.
dspace.entity.typePublication
relation.isAuthorOfPublication0d5b5872-7553-4b33-b0e5-085ced5d8f42
relation.isAuthorOfPublication.latestForDiscovery0d5b5872-7553-4b33-b0e5-085ced5d8f42

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
mañas.aleta2014.pdf
Size:
314.49 KB
Format:
Adobe Portable Document Format

Collections