Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Strong, multi-scale heterogeneity in earth's lowermost mantle

dc.contributor.authorTkalčić, Hrvoje
dc.contributor.authorYoung, Mallory
dc.contributor.authorMuir, Jack B.
dc.contributor.authorDavies, D. Rhodri
dc.contributor.authorMattesini, Maurizio
dc.date.accessioned2023-06-18T06:49:37Z
dc.date.available2023-06-18T06:49:37Z
dc.date.issued2015-12-17
dc.description© 2015 IOP Publishing Ltd. Calculations were performed on the Terrawulf cluster, a computational facility supported through the AuScope Australian Geophysical Observing System (AGOS). AuScope is funded under the National Collaborative Research Infrastructure Strategy (NCRIS), and the Education investment Fund (EIF3) both Australian Commonwealth Government Programs. D. R. D. is funded by an ARC Future Fellowship (FT140101262). M. M. acknowledges financial support by the Spanish Ministry of Economy and Competitiveness (CGL 2013-41860-P) and by the BBVA Foundation (PR14 CMA10). We are thankful to J. Byrne for his assistance with Terrawulf cluster and M. Sambridge and T. Bodin for useful discussions regarding technical aspects of the Bayesian inversion. All figures were made by The Generic Mapping Tools.
dc.description.abstractThe core mantle boundary (CMB) separates Earth's liquid iron outer core from the solid but slowly convecting mantle. The detailed structure and dynamics of the mantle within similar to 300 km of this interface remain enigmatic: it is a complex region, which exhibits thermal, compositional and phase-related heterogeneity, isolated pockets of partial melt and strong variations in seismic velocity and anisotropy. Nonetheless, characterising the structure of this region is crucial to a better understanding of the mantle's thermo-chemical evolution and the nature of core-mantle interactions. In this study, we examine the heterogeneity spectrum from a recent P-wave tomographic model, which is based upon trans-dimensional and hierarchical Bayesian imaging. Our tomographic technique avoids explicit model parameterization, smoothing and damping. Spectral analyses reveal a multi-scale wavelength content and a power of heterogeneity that is three times larger than previous estimates. Inter alia, the resulting heterogeneity spectrum gives a more complete picture of the lowermost mantle and provides a bridge between the long-wavelength features obtained in global S-wave models and the short-scale dimensions of seismic scatterers. The evidence that we present for strong, multi-scale lowermost mantle heterogeneity has important implications for the nature of lower mantle dynamics and prescribes complex boundary conditions for Earth's geodynamo.
dc.description.departmentDepto. de Física de la Tierra y Astrofísica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipNational Collaborative Research Infrastructure Strategy (NCRIS), Australia
dc.description.sponsorshipEducation investment Fund (EIF3), Australia
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO), España
dc.description.sponsorshipFundación BBVA
dc.description.sponsorshipAustralian Commonwealth Government Program
dc.description.sponsorshipFuture Fellowship, Australian Research Council (ARC)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/35478
dc.identifier.doi10.1038/srep18416
dc.identifier.issn2045-2322
dc.identifier.officialurlhttp://dx.doi.org/10.1038/srep18416
dc.identifier.relatedurlhttp://www.nature.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24323
dc.journal.titleScientific reports
dc.language.isoeng
dc.publisherNature publishing group
dc.relation.projectIDFT140101262
dc.relation.projectIDCGL 2013-41860-P
dc.relation.projectIDPR14 CMA10
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu550.3
dc.subject.keywordInner-core
dc.subject.keywordDeep mantle
dc.subject.keywordTravel-times
dc.subject.keywordBoundary
dc.subject.keywordModels
dc.subject.keywordScale
dc.subject.keywordD''
dc.subject.keywordPkp
dc.subject.keywordConstraints
dc.subject.keywordTomography
dc.subject.ucmGeofísica
dc.subject.ucmMeteorología (Física)
dc.subject.unesco2507 Geofísica
dc.titleStrong, multi-scale heterogeneity in earth's lowermost mantle
dc.typejournal article
dc.volume.number5
dcterms.references1. Garnero, E. J. & McNamara, A. K. Structure and dynamics of Earth’s lower mantle. Science 320, 626–628 (2008). 2. Davies, D. R. et al. Reconciling dynamic and seismic models of Earth’s lower mantle: The dominant role of thermal heterogeneity. Earth Planet Sci. Lett. 353–354, 253–269, doi: 10.1016/j.epsl.2012.08.016 (2012). 3. Williams, Q. & Garnero, E. Seismic evidence for partial melt at the base of Earth’s mantle. Science 273, 1528–1530 (1996). 4. Wenk, H.-R., Cottaar, S., Tome, C. N., McNamara, A. & Romanowicz, B. Deformation in the lowermost mantle: From polycrystal plasticity to seismic anisotropy. Earth Planet Sci. Lett. 306, 33–45 (2011). 5. Nakagawa, T. & Tackley, P. Lateral variations in CMB heat flux and deep mantle seismic velocity caused by a thermal–chemical-phase boundary layer in 3D spherical convection, Earth Planet. Sci. Lett. 271, 348–358 (2008). 6. Olson, P. & Christensen, U. R. The time-averaged magnetic field in numerical dynamos with non-uniform boundary heat flow. Geophys. J. Int. 151, 809–823 (2002). 7. Amit, H. & Choblet, G. Mantle-driven geodynamo features – Effects of compositional and narrow D” anomalies. Phys. Earth Planet. Int. 190-191, 34–43 (2012). 8. Aubert, J., Amit, H., Hulot, G. & Olson, P. Thermochemical flows couple the Earth’s inner core growth to mantle heterogeneity. Nature 457, 758–762 (2008). 9. Gubbins, D., Sreenivasan, B., Mound, J. & Rost, S. Melting of the Earth’s inner core. Nature 473, 361–364 (2011). 10. Kárason, H. & van der Hilst, R. D. Tomographic imaging of the lowermost mantle with differential times of refracted and diffracted core phases (PKP, Pdiff). J. Geophys. Res. 106(B4), 6569–6587 (2001). 11. Tkalčić, H., Romanowicz, B. & Houy, N. Constraints on D” structure using PKP(AB-DF), PKP(BC-DF) and PcP-P traveltime data from broad-band records. Geophys. J. Int. 148, 599–616 (2002). 12. Simons, F. J. et al. Solving or resolving global tomographic models with spherical wavelets, and the scale and sparsity of seismic heterogeneity. Geophys. J. Int. 187(2), 969–988 (2011). 13. Soldati, G., Boschi, L. & Forte, A. M. Tomography of core-mantle boundary and lowermost mantle coupled by geodynamics. Geophys. J. Int. 189, 730–746 (2012), 14. Young, M. K., Tkalčić, H., Bodin, T. & Sambridge, M. Global P-wave tomography of Earth’s lowermost mantle from partition modeling. J. of Geophys. Res. 18, 5467–5486 (2013). 15. Bernando, J. & Smith. A. Bayesian Theory, John Wiley & Sons, Ltd., New York (1994). 16. Houser, C., Masters, G., Shearer, P. & Laske, G. Shear and compressional velocity models of the mantle from cluster analysis of longperiod waveforms. Geophys. J. Int. 174, 195–212 (2008), 17. Della Mora, L., Boschi, L., Tackley, P. J., Nakagawa, T. & Giardini, D. Low seismic resolution cannot explain S/P decorrelation in the lower mantle. Geophy. Res. Lett. 38, L12303, doi: 10.1029/2011GL047559 (2011). 18. Rost, S. & Earle, P. S. Identifying regions of strong scattering at the core-mantle boundary from analysis of PKKP precursor energy. Earth Planet. Sci. Lett. 297, 616- 626 (2010). 19. Muir, J. B. & Tkalčić, H. A method of spherical harmonic analysis in the geosciences via Bayesian hierarchical inference. Geophys. J. Int. 203(2), 1164–1171, doi: 10.1093/gji/ggv361 (2015). 20. Inoue, H., Fukao, Y., Tanabe, K. & Ogata, Y. Whole mantle P-wave travel time tomography. Phys. Earth Planet. Inter. 59, 294–328 (1990). 21. Dziewonski, A., Hager, B. H. & O’Connel, R. J. Large-scale heterogeneities in the lower mantle, J. Geophys. Res. 82(2), 239–255 (1977). 22. Wysession, M. E. Large-scale structure at the core-mantle boundary from diffracted waves. Nature 382, 244–248 (1996). 23. Doornbos, D. Seismic wave scattering near caustics: Observations of PKKP pre-cursors. Nature 247, 352–353 (1974). 24. Bataille, K. & Flatte, S. Inhomogeneities near the core-mantle boundary inferred from short-period scattered PKP waves recorded at the Global Digital Seismograph Network. J. Geophys. Res. 93, 15057–15064 (1988). 25. Schuberth, B. S. A., Bunge, H.-P. & Ritsema, J. Tomographic filtering of high-resolution mantle circulation models: can seismic heterogeneity be explained by temperature alone? Geoch. Geophys. Geosyst. 10, Q05W03, doi: 10.1029/2009GC002401 (2009). 26. Bull, A. L., McNamara, A. K. & Ritsema, J. Synthetic tomography of plume clusters and thermochemical piles. Earth. Planet. Sci. Lett. 278, 152–156, doi: 10.1016/j.epsl.2008.11.018 (2009). 27. Davies, D. R., Goes, S. & Lau, H. C. P. Thermally-dominated deep mantle LLSVPs: A review. The Earth’s heterogeneous mantle, Editors: A. Khan & F. Deschamps, Springer Geophysics, doi: 10.1007.978-3-319-15627-9_14 (2015). 28. Torsvik, T. H., Smethurst, M. A., Burke, K. & Steinberger, B. Large igneous provinces generated from the margins of the large lowvelocity provinces in the deep mantle. Geophys. J. Int. 167, 1447–1460, doi: 10.1111/j.1365-246X.2006.03158.x (2006). 29. Weis, D., Garcia, M. O., Rhodes, J. M., Jellinek, M. & Scoates, S. Role of the deep mantle in generating the compositional asymmetry of the Hawaiian mantle plume. Nature Geosc. 4, 831–838, doi: 10.1038/NGEO1328 (2011). 30. Pachhai, S., Dettmer, J. & Tkalčić, H. Ultra-low velocity zones beneath the Philippine and Tasman Seas revealed by a trans-dimensional Bayesian waveform inversion. Geophys. J. Int. 203(2), 1302–1318, doi: 10.1093/gji/ggv368 (2015). 31. Badro, J. et al. Iron partitioning in Earth’s mantle: toward a deep lower mantle discontinuity. Science 300, 789–791 (2003). 32. Lin, J.-F. et al. Spin transition of iron in magnesiowüstite in the Earth’s lower mantle. Nature 436, 377–380 (2005). 33. Bréger, L., Tkalčić, H. & Romanowicz, B. The effect of D” on PKP(AB-DF) travel time residuals and possible implications for inner core structure. Earth Planet. Sci. Lett. 175, 133–143 (2000). 34. Attanayake, J., Cormier, V. F. & de Silva, S. M. Uppermost inner core seismic structure-new insights from body waveform inversion. Earth Planet. Sci. Lett. 385, 49–58 (2014). 35. Yee, T.-G., Rhie, J. & Tkalčić, H. Regionally heterogeneous uppermost inner core observed with Hi-net array. J. Geophys. Res. 119, doi: 10.1002/2014JB011341, 7823–7845 (2014). 36. Tkalčić, H. Complex inner core of the Earth: The last frontier of global seismology, Rev. Geophys. 53/1, 59–94, doi: 10.1002/2014RG000469 (2015). 37. Tkalčić, H. Large variations in travel times of mantle-sensitive seismic waves from the South Sandwich Islands: is the Earth’s inner core a conglomerate of anisotropic domains? Geophys. Res. Lett. 37, L14312, doi: 10.1029/2010GL043841 (2010). 38. Garcia, R., Chevrot, S. & Calvet, M. Statistical study of seismic heterogeneities at the base of the mantle from PKP differential traveltimes. Geophys. J. Int. 179, 1607–1616 (2009). 39. Bodin, T., Sambridge, M., Rawlinson, N. & Arroucau, P. Transdimensional tomography with unknown data noise. Geophys. J. Int. 189, 1536–1556 (2012). 40. Wessel, P. & Smith, W. New, improved version of the Generic Mapping Tools released. EOS Trans. AGU 79, 579 (1998). 41. Kennett, B. L. N., Engdahl, E. R. & Buland, R. Constraints on seismic velocities in the Earth from travel times. Geophys. J. Int. 122, 108–124 (1995).
dspace.entity.typePublication
relation.isAuthorOfPublication5f3e9855-880f-4f3a-b025-19f0e3db2257
relation.isAuthorOfPublication.latestForDiscovery5f3e9855-880f-4f3a-b025-19f0e3db2257

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MattesiniM 01 libre + CC.pdf
Size:
1.83 MB
Format:
Adobe Portable Document Format

Collections