Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Discrete models of dislocations and their motion in cubic crystals

Loading...
Thumbnail Image

Full text at PDC

Publication date

2005

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

American Physical Society
Citations
Google Scholar

Citation

Carpio, A., y L. L. Bonilla. «Discrete Models of Dislocations and Their Motion in Cubic Crystals». Physical Review B, vol. 71, n.o 13, abril de 2005, p. 134105. DOI.org (Crossref), https://doi.org/10.1103/PhysRevB.71.134105.

Abstract

A discrete model describing defects in crystal lattices and having the standard linear anisotropic elasticity as its continuum limit is proposed. The main ingredients entering the model are the elastic stiffness constants of the material and a dimensionless periodic function that restores the translation invariance of the crystal and influences the Peierls stress. Explicit expressions are given for crystals with cubic symmetry: sc (simple cubic), fcc, and bcc. Numerical simulations of this model with conservative or damped dynamics illustrate static and moving-edge and screw dislocations, and describe their cores and profiles. Dislocation loops and dipoles are also numerically observed. Cracks can be created and propagated by applying a sufficient load to a dipole formed by two edge dislocations.

Research Projects

Organizational Units

Journal Issue

Description

Unesco subjects

Keywords

Collections