Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Permanence and asymptotically stable complete trajectories for nonautonomous Lotka-Volterra models with diffusion

dc.contributor.authorRodríguez Bernal, Aníbal
dc.contributor.authorLanga, José A.
dc.contributor.authorRobinson, James C.
dc.contributor.authorSuárez, Antonio
dc.date.accessioned2023-06-20T09:29:27Z
dc.date.available2023-06-20T09:29:27Z
dc.date.issued2009
dc.description.abstractLotka–Volterra systems are the canonical ecological models used to analyze population dynamics of competition, symbiosis, or prey-predator behavior involving different interacting species in a fixed habitat. Much of the work on these models has been within the framework of infinite-dimensional dynamical systems, but this has frequently been extended to allow explicit time dependence, generally in a periodic, quasiperiodic, or almost periodic fashion. The presence of more general nonautonomous terms in the equations leads to nontrivial difficulties which have stalled the development of the theory in this direction. However, the theory of nonautonomous dynamical systems has received much attention in the last decade, and this has opened new possibilities in the analysis of classical models with general nonautonomous terms. In this paper we use the recent theory of attractors for nonautonomous PDEs to obtain new results on the permanence and the existence of forwards and pullback asymptotically stable global solutions associated to nonautonomous Lotka–Volterra systems describing competition, symbiosis, or prey-predator phenomena. We note in particular that our results are valid for prey-predator models, which are not order-preserving: even in the “simple” autonomous case the uniqueness and global attractivity of the positive equilibrium (which follows from the more general results here) is new.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Educación y Ciencia
dc.description.sponsorshipConsejería de Innovación, Ciencia y Empresa (Junta de Andalucía)
dc.description.sponsorshipRoyal Society University Research Fellowship
dc.description.sponsorshipDGES
dc.description.sponsorshipCADEDIF
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/12926
dc.identifier.doi10.1137/080721790
dc.identifier.issn0036-1410
dc.identifier.officialurlhttp://epubs.siam.org/sima/resource/1/sjmaah
dc.identifier.urihttps://hdl.handle.net/20.500.14352/49707
dc.issue.number6
dc.journal.titleSiam Journal on Mathematical Analysis
dc.language.isoeng
dc.page.final2216
dc.page.initial2179
dc.publisherSociety for Industrial and Applied Mathematics
dc.relation.projectIDMTM2005-01412
dc.relation.projectIDFQM-02468
dc.relation.projectIDMTM2006–08262
dc.relation.projectIDGrupo de Investigación UCM-CAM 920894
dc.relation.projectIDMTM2006-07932
dc.relation.projectIDFQM-520
dc.rights.accessRightsopen access
dc.subject.cdu517.9
dc.subject.keywordLotka-Volterra competition
dc.subject.keywordSymbiosis and prey-predator systems
dc.subject.keywordNon-autonomous dynamical systems
dc.subject.keywordPermanence
dc.subject.keywordAttracting complete trajectories
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titlePermanence and asymptotically stable complete trajectories for nonautonomous Lotka-Volterra models with diffusion
dc.typejournal article
dc.volume.number40
dspace.entity.typePublication
relation.isAuthorOfPublicationfb7ac82c-5148-4dd1-b893-d8f8612a1b08
relation.isAuthorOfPublication.latestForDiscoveryfb7ac82c-5148-4dd1-b893-d8f8612a1b08

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2008permanence-09.pdf
Size:
268.21 KB
Format:
Adobe Portable Document Format

Collections