Effect of fill-factor on the Talbot effect of diffraction gratings

Thumbnail Image
Full text at PDC
Publication Date
Salgado Remacha, Francisco Javier
Bernabeu Martínez, Eusebio
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
European Optical Soc
Google Scholar
Research Projects
Organizational Units
Journal Issue
We analyze the effect of the fill factor of binary diffraction gratings on the near field propagation. We show that the location of the best-visibility planes changes with the configuration parameters of the grating, that is, the amplitude and phase modulation and the fill factor. Moreover, different intensity patterns and contrast shapes can be obtained when different configurations are used. Analytical expressions describing the contrast of the diffracted field are obtained, that agree with numerical simulations.
© The Authors. This work has been partially supported by project DPI2011-27851 and project INNPACTO ”FORE”, IPT-020000-2010-9 of the Ministerio de Ciencia e Innovación of Spain.
1. E. G. Loewen, and E. Popov, Diffraction gratings and applications (Marcel Dekker, New York, 1997). 2. C. Palmer, Diffraction Grating Handbook (Richardson Grating Laboratory, New York, 2000). 3. M. Born, and E. Wolf, Principles of Optics (Pergamon Press, Oxford, 1980). 4. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968). 5. G. O. Reynolds, J. B. DeVelis, G. B. Parrent Jr., and B. J. Thompson, The New Physical Optics notebooks tutorials in Fourier Optics (SPIE Press, Bellingham,1989). 6. D. C. OShea, T. J. Suleski, A. D. Kathman, and D. W. Prather Diffractive Optics. Design, Fabrication, and Test (SPIE Press, Bellingham, 2003). 7. K. Patorski, "The self imaging phenomenon and its applications", Prog. Optics 27, 3-108 (1989). 8. L.M. Sánchez-Brea, and T. Morlanes, "Metrological errors in optical encoders", Meas. Sci. Technol. 19(11), 115104 (2008). 9. F. J. Torcal-Milla, L. M. Sánchez-Brea, and F. J. Salgado-Remacha, "Self-images location of amplitude/phase binary gratings", App. Optics 48, 6252-6258 (2009). 10. M. D. Feit, and J. A. Fleck Jr., "Light propagation in graded-index optical fibers" App. Optics 17, 3990-3998 (1978). 11. M. Koshiba, Y. Tsuji, and M. Hikari, "Finite Element Beam Propagation Method with Perfectly Matched Layer Boundary Conditions", IEEE T. Magn. 35, 1482-1485 (1999). 12. D. Yevick, and L. Thyln, "Analysis of gratings by the beampropagation method" J. Opt. Soc. Am. 72, 1084-1089 (1982). 13. P. J. M. Vanbrabant, J. Beeckman, K. Nayts, R. James, and F. A. Fernandez, "A finite element beam propagation method for simulation of liquid crystal devices" Opt. Express 17, 10895-10909 (2009). 14. P. Srisungsitthisunti, O. K. Ersoy, and X. Xu, "Beam propagation method modeling of modified volume Fresnel zone plates fabricated by femtosecond laser direct writing" J. Opt. Soc. Am. A 26, 188-194 (2009). 15. J. P. Berenguer, "A perfectly matched layer for the absorption of electromagnetic waves" J. Comput. Phys. 114, 185-200 (1994). 16. W. P. Huang, C. L. Xu, W. Lui, and K. Yokoyama, "The perfectly matched layer (PML) boundary condition for the beam propagation method" IEEE Photonic. Tech. L. 8, 649-651 (1996). 17. U. Levy, E. Marom, and D. Mendlovic, "Thin element approximation for the analysis of blazed gratings: simplified model and validity limits" Opt. Commun. 229, 11-21 (2004). 18. E. Keren, and O. Kafri, "Diffraction effects in moir deflectometry" J. Opt. Soc. Am. A 2, 111-120 (1985). 19. F. J. Torcal-Milla, L. M. Sánchez-Brea, F. J. Salgado-Remacha, and E. Bernabeu, "Self-imaging with curved gratings" Opt. Commun. 283(2) 3869-3873 (2010). 20. L. M. Sánchez-Brea, J. Saez-Landete, J. Alonso, and E. Bernabeu, "Invariant grating pseudoimaging using polychromatic light and a finite extension source" Appl. Optics 47(10), 1470-1477 (2008).