Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Thermal waves in absorbing media

dc.contributor.authorHerrero, Miguel A.
dc.contributor.authorVázquez, Juan Luis
dc.date.accessioned2023-06-20T17:06:13Z
dc.date.available2023-06-20T17:06:13Z
dc.date.issued1988-08
dc.description.abstractWe discuss the existence of travelling-wave solutions with interfaces for the nonlinear heat equation with absorption ut = a(um)xx – bu(n) with a, b> 0 and m, n Є R. Several situations occur depending on the relative strength of the diffusion and absorption terms reflected by their exponents m and n. We characterize the existence of finite travelling waves in terms of m and n, show their uniqueness up to translations in space and time, and derive their velocity from the wave profile near the interface or front.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.sponsorshipCAICYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17515
dc.identifier.doi10.1016/0022-0396(88)90003-4
dc.identifier.issn0022-0396
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/0022039688900034
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57774
dc.issue.number2
dc.journal.titleJournal of Differential Equations
dc.language.isoeng
dc.page.final233
dc.page.initial218
dc.publisherElsevier
dc.relation.projectID2805/83
dc.relation.projectID3508/23
dc.rights.accessRightsrestricted access
dc.subject.cdu517.9
dc.subject.cdu517.956.4
dc.subject.cdu536.2
dc.subject.keywordAbsorbing media
dc.subject.keywordtravelling-wave
dc.subject.keywordexistence
dc.subject.keyworduniqueness
dc.subject.keywordasymptotic behavior
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleThermal waves in absorbing media
dc.typejournal article
dc.volume.number74
dcterms.referencesD. G. ARONSON, Regularity properties of flows through porous media: The interface, Arch. Rat. Mech. Anal. 37 (1970), 1-10. D. G. ARONSON ET PH. BÉNILAN, Régularité des solutions de l’équation des milieu poreux dans RN, Compt. Rend. Acad. Sci. Paris Sér. A 288 (1979), 103-105. D. G. ARONSON AND J. L. VÁZQUEZ, Eventual C∞-regularity and concavity for the solutions of the one-dimensional porous medium equation, IMA preprint 290. L. A. CAFFARELLI AND A. FRIEDMAN, Regularity of the free boundary for the one-dimensional flow of a gas in a porous medium, Amer. J. Math. 101 (1979) 1193-1218. L. C. EVANS AND B. F. KNERR, Instantaneous shrinking of the support of nonnegative solutions to certain parabolic equations and variational inequalities, Illinois J. Math. 23 (1979), 153-166. J. R. ESTEBAN, A. RODRIGUEZ, AND J. L. VÁZQUEZ, A nonlinear heat equation with singular diffusivity, Comm. Partial Diff. Eqs., to appear. A. FRIEDMAN AND M. A. HERRERO, Extinction properties of semi-linear heat equation with strong absorption, J. Math. Anal. Appl. 124 (1987), 530-546. M. A. HERRERO, A limit case in nonlinear diffusion, Nonlinear Analysis, to appear. M. A. HERRERO AND J. L. VÁZQUEZ, The one-dimensional nonlinear heat equation with absorption: Regularity of solutions and interfaces, SIAM J. Math. Anal. 18 (1987), 149-167. A. S. KALASHNIKOV, The propagation of disturbances in problems of nonlinear heat conduction with absorption, USSR Comput. Math. and Math. Phys. 14 (1974), 891-905. A. S. KALASHNIKOV, On the differential properties of generalized solutions of equations of nonstationary filtration type, Vestnik Mosk. Univ. Math. 29 (1974), 62-68. R. KERSNER, On the behaviour when t + ∞ of generalized solutions of a degenerate parabolic equation, Acta Math. Sci. Hungar. 34 (1979), 157-163. [in Russian] R. KERSNER, The behaviour of temperature fronts in media with nonlinear thermal conductivity under absorption, Vestnik Mosk. Univ. Math. 33, 5 (1978), 44-51. B. F. KNERR, The porous medium equation in one dimension, Trans. Amer. Math. Soc. 234 (1977), 381-415. L. K. MARTINSON, Propagation of a thermal wave in a non-linear absorbing medium, J. Appl. Mech. Tech. Phys. 21 (1980), 419-421. L. K. MARTINSON AND K. B. PAVLOV, Thermal localization in non-linear heat conduction, Zh. Vychisl Mat. i Mat. Fiz. 12, 4 (1972), 1048-1053. 0. A. OLEINIK, A. S. KALASHNIKOV, AND CHOU YU-LIN, The Cauchy problem and boundary value problems for equations of the type of nonstationary filtration, Izv. Akad. Nauk USSR Ser. Mat. 22 (1958), 667-704. [in Russian] L. A. PELETIER, The porous media equation, in “Applications of Nonlinear Analysis in the Physical Sciences” (H. Amman et al., Eds.), pp. 229-241, Pitman, London, 1981. PH. ROSENAU AND S. KAMIN, Thermal waves in an absorbing and convecting medium, Physica 8D (1983), 273-283.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Herrero56.pdf
Size:
809.83 KB
Format:
Adobe Portable Document Format

Collections