Thermal waves in absorbing media
dc.contributor.author | Herrero, Miguel A. | |
dc.contributor.author | Vázquez, Juan Luis | |
dc.date.accessioned | 2023-06-20T17:06:13Z | |
dc.date.available | 2023-06-20T17:06:13Z | |
dc.date.issued | 1988-08 | |
dc.description.abstract | We discuss the existence of travelling-wave solutions with interfaces for the nonlinear heat equation with absorption ut = a(um)xx – bu(n) with a, b> 0 and m, n Є R. Several situations occur depending on the relative strength of the diffusion and absorption terms reflected by their exponents m and n. We characterize the existence of finite travelling waves in terms of m and n, show their uniqueness up to translations in space and time, and derive their velocity from the wave profile near the interface or front. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.faculty | Instituto de Matemática Interdisciplinar (IMI) | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | CAICYT | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/17515 | |
dc.identifier.doi | 10.1016/0022-0396(88)90003-4 | |
dc.identifier.issn | 0022-0396 | |
dc.identifier.officialurl | http://www.sciencedirect.com/science/article/pii/0022039688900034 | |
dc.identifier.relatedurl | http://www.sciencedirect.com | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/57774 | |
dc.issue.number | 2 | |
dc.journal.title | Journal of Differential Equations | |
dc.language.iso | eng | |
dc.page.final | 233 | |
dc.page.initial | 218 | |
dc.publisher | Elsevier | |
dc.relation.projectID | 2805/83 | |
dc.relation.projectID | 3508/23 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 517.9 | |
dc.subject.cdu | 517.956.4 | |
dc.subject.cdu | 536.2 | |
dc.subject.keyword | Absorbing media | |
dc.subject.keyword | travelling-wave | |
dc.subject.keyword | existence | |
dc.subject.keyword | uniqueness | |
dc.subject.keyword | asymptotic behavior | |
dc.subject.ucm | Ecuaciones diferenciales | |
dc.subject.unesco | 1202.07 Ecuaciones en Diferencias | |
dc.title | Thermal waves in absorbing media | |
dc.type | journal article | |
dc.volume.number | 74 | |
dcterms.references | D. G. ARONSON, Regularity properties of flows through porous media: The interface, Arch. Rat. Mech. Anal. 37 (1970), 1-10. D. G. ARONSON ET PH. BÉNILAN, Régularité des solutions de l’équation des milieu poreux dans RN, Compt. Rend. Acad. Sci. Paris Sér. A 288 (1979), 103-105. D. G. ARONSON AND J. L. VÁZQUEZ, Eventual C∞-regularity and concavity for the solutions of the one-dimensional porous medium equation, IMA preprint 290. L. A. CAFFARELLI AND A. FRIEDMAN, Regularity of the free boundary for the one-dimensional flow of a gas in a porous medium, Amer. J. Math. 101 (1979) 1193-1218. L. C. EVANS AND B. F. KNERR, Instantaneous shrinking of the support of nonnegative solutions to certain parabolic equations and variational inequalities, Illinois J. Math. 23 (1979), 153-166. J. R. ESTEBAN, A. RODRIGUEZ, AND J. L. VÁZQUEZ, A nonlinear heat equation with singular diffusivity, Comm. Partial Diff. Eqs., to appear. A. FRIEDMAN AND M. A. HERRERO, Extinction properties of semi-linear heat equation with strong absorption, J. Math. Anal. Appl. 124 (1987), 530-546. M. A. HERRERO, A limit case in nonlinear diffusion, Nonlinear Analysis, to appear. M. A. HERRERO AND J. L. VÁZQUEZ, The one-dimensional nonlinear heat equation with absorption: Regularity of solutions and interfaces, SIAM J. Math. Anal. 18 (1987), 149-167. A. S. KALASHNIKOV, The propagation of disturbances in problems of nonlinear heat conduction with absorption, USSR Comput. Math. and Math. Phys. 14 (1974), 891-905. A. S. KALASHNIKOV, On the differential properties of generalized solutions of equations of nonstationary filtration type, Vestnik Mosk. Univ. Math. 29 (1974), 62-68. R. KERSNER, On the behaviour when t + ∞ of generalized solutions of a degenerate parabolic equation, Acta Math. Sci. Hungar. 34 (1979), 157-163. [in Russian] R. KERSNER, The behaviour of temperature fronts in media with nonlinear thermal conductivity under absorption, Vestnik Mosk. Univ. Math. 33, 5 (1978), 44-51. B. F. KNERR, The porous medium equation in one dimension, Trans. Amer. Math. Soc. 234 (1977), 381-415. L. K. MARTINSON, Propagation of a thermal wave in a non-linear absorbing medium, J. Appl. Mech. Tech. Phys. 21 (1980), 419-421. L. K. MARTINSON AND K. B. PAVLOV, Thermal localization in non-linear heat conduction, Zh. Vychisl Mat. i Mat. Fiz. 12, 4 (1972), 1048-1053. 0. A. OLEINIK, A. S. KALASHNIKOV, AND CHOU YU-LIN, The Cauchy problem and boundary value problems for equations of the type of nonstationary filtration, Izv. Akad. Nauk USSR Ser. Mat. 22 (1958), 667-704. [in Russian] L. A. PELETIER, The porous media equation, in “Applications of Nonlinear Analysis in the Physical Sciences” (H. Amman et al., Eds.), pp. 229-241, Pitman, London, 1981. PH. ROSENAU AND S. KAMIN, Thermal waves in an absorbing and convecting medium, Physica 8D (1983), 273-283. | |
dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1