Quantitative proteomic analyses of a Pb-adapted Tetrahymena thermophila strain reveal the cellular strategy to Pb(II) stress including lead biomineralization to chloropyromorphite

dc.contributor.authorDe Francisco Martínez, Patricia
dc.contributor.authorAmaro Torres, Francisco
dc.contributor.authorMartín González, Ana María
dc.contributor.authorAurelio Serrano
dc.contributor.authorGutiérrez Fernández, Juan Carlos
dc.date.accessioned2024-01-17T12:17:09Z
dc.date.available2024-01-17T12:17:09Z
dc.date.issued2023-09
dc.description.abstractA strain of the protozoan ciliate Tetrahymena thermophila adapted to increasing Pb(II) concentrations over two years has shown that one of the resistance mechanisms to this extreme metal stress is the lead biomineralization to chloropyromorphite, one of the most stable minerals in the earth's crust. Several techniques such as microanalysis coupled to transmission and scanning electron microscopy (X-Ray Energy Disperse Spectroscopy), fluorescence microscopy and X-ray power diffraction analysis have revealed the presence of chloropyromorphite as crystalline aggregates of nano-globular structure, together with the presence of other secondary lead minerals. This is the first time that the existence of this type of biomineralization in a ciliate protozoan is described. The Pb(II) bioremediation capacity of this strain has shown that it can remove >90 % of the toxic soluble lead from the medium. A quantitative proteomic analysis of this strain has revealed the main molecular-physiological elements involved in adaptation to Pb(II) stress: increased activity of proteolytic systems against lead proteotoxicity, occurrence of metallothioneins to immobilize Pb(II) ions, antioxidant enzymes to mitigate oxidative stress, and an intense vesicular trafficking presumably involved in the formation of vacuoles where pyromorphite accumulates and is subsequently excreted, together with an enhanced energy metabolism. As a conclusion, all these results have been compiled into an integrated model that could explain the eukaryotic cellular response to extreme lead stress.
dc.description.departmentDepto. de Genética, Fisiología y Microbiología
dc.description.facultyFac. de Ciencias Biológicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia y Competitividad
dc.description.statuspub
dc.identifier.doi10.1016/j.scitotenv.2023.164252
dc.identifier.issn0048-9697
dc.identifier.officialurlhttps://www.sciencedirect.com/science/article/pii/S0048969723028735?via%3Dihub
dc.identifier.relatedurlhttps://www.sciencedirect.com/science/article/pii/S0048969723028735?via%3Dihub
dc.identifier.urihttps://hdl.handle.net/20.500.14352/93597
dc.journal.titleScience of the Total Environment
dc.language.isoeng
dc.page.final19
dc.page.initial1
dc.publisherElsevier
dc.relation.projectIDCGL2016-75494-R
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.cdu575
dc.subject.cdu579
dc.subject.keywordChloropyromorphite
dc.subject.keywordProteomic
dc.subject.keywordOxidative stress
dc.subject.keywordMetallothioneins
dc.subject.keywordVesicular traffic
dc.subject.keywordTetrahymena thermophila
dc.subject.ucmMicrobiología (Biología)
dc.subject.ucmEcología (Biología)
dc.subject.unesco2414 Microbiología
dc.subject.unesco3308.11 Control de la Contaminación del Agua
dc.titleQuantitative proteomic analyses of a Pb-adapted Tetrahymena thermophila strain reveal the cellular strategy to Pb(II) stress including lead biomineralization to chloropyromorphite
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number891
dspace.entity.typePublication
relation.isAuthorOfPublication469a6187-001d-4d49-a795-9072ff43f702
relation.isAuthorOfPublication9517917a-13ff-409d-b08f-bd204a61d258
relation.isAuthorOfPublicatione48abb18-103b-4edc-9081-81a44bc92b44
relation.isAuthorOfPublication0942b309-8e93-4ae5-a284-d49cb191c64b
relation.isAuthorOfPublication.latestForDiscovery469a6187-001d-4d49-a795-9072ff43f702
Download
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DeFrancisco_2023.pdf
Size:
6.06 MB
Format:
Adobe Portable Document Format
Collections