Cellular coordination underpins rapid reversals in gliding filamentous cyanobacteria and its loss results in plectonemes

dc.contributor.authorRosko, Jerko
dc.contributor.authorPoon, Rebecca N
dc.contributor.authorCremin, Kelsey
dc.contributor.authorLocatelli, Emanuele
dc.contributor.authorCoates, Mary
dc.contributor.authorDuxbury, Sarah JN
dc.contributor.authorRandall, Kieran
dc.contributor.authorCroft, Katie
dc.contributor.authorValeriani, Chantal
dc.contributor.authorPolin, Marco
dc.contributor.authorSoyer, Orkun S
dc.date.accessioned2025-09-15T10:27:22Z
dc.date.available2025-09-15T10:27:22Z
dc.date.issued2025
dc.description.abstractCyanobacteria are key contributors to biogeochemical cycles through photosynthesis and carbon fixation. In filamentous, multicellular cyanobacteria these functions can be influenced through gliding motility, which enables filaments to localise in response to light and also form aggregates. Here, we use the aggregate forming species Fluctiforma draycotensis to study gliding motility dynamics in detail. We find that filaments move in curved and straight trajectories interspersed with re-orientation or reversal of direction. Most reversals take few seconds but some take substantially longer, resulting in a long-tailed distribution of stoppage times. Mean filament speeds range around a micron per second with a relatively uniform distribution against filament length, implying that all or fixed proportion of cells in a filament contribute to movement. We implement a biophysical model that can recapitulate these findings. Model simulations show that for filaments to reverse quickly, cells in a filament must achieve high coordination of the direction of the forces that they generate. To seek experimental support of this prediction, we track individual cells in a filament. This reveals that cells’ translational movement is fully coupled with their rotation along the long-axis of the filament, and that cellular movement remains coordinated throughout a reversal. For some filaments, especially longer ones, however, we also find that cellular coordination can be lost, and filaments can form buckles that can twist around themselves, resulting in plectonemes. The experimental findings and the biophysical model presented here will inform future studies of individual and collective filament movement.
dc.description.departmentDepto. de Física de la Tierra y Astrofísica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipGordon & Betty Moore Foundation
dc.description.sponsorshipMinistry of Education, Universities and Research (MIUR)
dc.description.sponsorshipMinisterio de Asuntos Económicos y Transición Digital (España)
dc.description.sponsorshipLeverhulme Trust
dc.description.sponsorshipGobierno de España
dc.description.sponsorshipMinisterio de Ciencia e Innovación (España)
dc.description.sponsorshipInstituto de Salud Carlos III (España)
dc.description.statuspub
dc.identifier.citationRosko Jerko, Cremin Kelsey, Locatelli Emanuele, Poon Rebecca N, Coates Mary, Duxbury Sarah JN, Randall Kieran, Croft Katie, Valeriani Chantal, Polin Marco, Soyer Orkun S (2024) Cellular coordination underpins rapid reversals in gliding filamentous cyanobacteria and its loss results in plectonemes eLife 13:RP100768 https://doi.org/10.7554/eLife.100768.2
dc.identifier.doi10.7554/elife.100768
dc.identifier.issn2050-084X
dc.identifier.officialurlhttps://doi.org/10.7554/eLife.100768.2.sa4
dc.identifier.relatedurlhttps://elifesciences.org/reviewed-preprints/100768
dc.identifier.urihttps://hdl.handle.net/20.500.14352/123921
dc.journal.titleeLife
dc.language.isoeng
dc.page.finalRP100768-43
dc.page.initialRP100768-1
dc.publishereLife Sciences Pub.
dc.relation.projectID10.37807/GBMF9200
dc.relation.projectIDinfo:eu-repo/grantAgreement/ISCIII/Plan Estatal de Investigación Científica, Técnica y de Innovación 2021-2023/IHRC22%2F00002/ES/Bacterial biofilm disruption mediated by active colloids/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-140407NB-C21/ES/AUTOORGANIZACION Y DINAMICA EN SISTEMAS DE PARTICULAS ACTIVAS Y ACTUADAS INTERACTUANTES: SIMULACIONES Y EXPERIMENTOS/
dc.relation.projectIDRPG-2018-345
dc.relation.projectIDCEX202-001198
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.cdu57
dc.subject.cdu61
dc.subject.cdu577.1
dc.subject.keywordCyanobacteria
dc.subject.keywordMotility
dc.subject.keywordMulticellularity
dc.subject.keywordCell coordination
dc.subject.keywordSoft matter
dc.subject.keywordGliding
dc.subject.ucmBiología
dc.subject.ucmMedicina
dc.subject.unesco2403 Bioquímica
dc.titleCellular coordination underpins rapid reversals in gliding filamentous cyanobacteria and its loss results in plectonemes
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number13
dspace.entity.typePublication
relation.isAuthorOfPublication70e93697-1ddb-4497-977d-73fcf46c4837
relation.isAuthorOfPublication.latestForDiscovery70e93697-1ddb-4497-977d-73fcf46c4837

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Cellular coordination underpins_Rosko_100768-v2.pdf
Size:
2.51 MB
Format:
Adobe Portable Document Format

Collections