Highly tempering infinite matrices II: From divergence to convergence via Toeplitz–Silverman matrices
dc.contributor.author | Bernal González, L. | |
dc.contributor.author | Fernández Sánchez, Juan | |
dc.contributor.author | Seoane Sepúlveda, Juan Benigno | |
dc.contributor.author | Trutschnig, W. | |
dc.date.accessioned | 2023-06-17T08:29:28Z | |
dc.date.available | 2023-06-17T08:29:28Z | |
dc.date.issued | 2020-11-19 | |
dc.description.abstract | It was recently proved [6] that for any Toeplitz{Silverman matrix A, there exists a dense linear subspace of the space of all sequences, all of whose nonzero elements are divergent yet whose images under A are convergent. In this paper, we improve and generalize this result by showing that, under suitable assumptions on the matrix, there are a dense set, a large algebra and a large Banach lattice consisting (except for zero) of such sequences. We show further that one of our hypotheses on the matrix A cannot in general be omitted. The case in which the field of the entries of the matrix is ultrametric is also considered. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | FALSE | |
dc.description.sponsorship | Ministerio de Ciencia e Innovación (MICINN) | |
dc.description.sponsorship | Junta de Andalucía | |
dc.description.sponsorship | WISS 2025 project IDA-lab Salzburg | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/74697 | |
dc.identifier.doi | 10.1007/s13398-020-00934-z | |
dc.identifier.issn | 1578-7303 | |
dc.identifier.officialurl | https://link.springer.com/article/10.1007/s43037-020-00103-9 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/7274 | |
dc.journal.title | Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas | |
dc.language.iso | eng | |
dc.publisher | Springer | |
dc.relation.projectID | PGC2018-098474-B-C21; PGC2018- 097286-B-I00. | |
dc.relation.projectID | FQM-127 Grant P08-FQM-03543 | |
dc.relation.projectID | 20204-WISS/225/197-2019 and 20102-F1901166-KZP | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 512.64 | |
dc.subject.cdu | 517 | |
dc.subject.keyword | Lineability | |
dc.subject.keyword | Algebrability | |
dc.subject.keyword | Latticeability | |
dc.subject.keyword | Matrix summability | |
dc.subject.ucm | Álgebra | |
dc.subject.ucm | Análisis matemático | |
dc.subject.unesco | 1201 Álgebra | |
dc.subject.unesco | 1202 Análisis y Análisis Funcional | |
dc.title | Highly tempering infinite matrices II: From divergence to convergence via Toeplitz–Silverman matrices | |
dc.type | journal article | |
dc.volume.number | 114 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 22475fa7-9101-4cd2-86a9-71842d2bd51a | |
relation.isAuthorOfPublication | e85d6b14-0191-4b04-b29b-9589f34ba898 | |
relation.isAuthorOfPublication.latestForDiscovery | 22475fa7-9101-4cd2-86a9-71842d2bd51a |
Download
Original bundle
1 - 1 of 1