Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Measurement of the thermal conductivity of nanofluids by the multicurrent hot-wire method

dc.contributor.authorVázquez Peñas, José R.
dc.contributor.authorOrtiz De Zárate Leira, José María
dc.contributor.authorKhayet Souhaimi, Mohamed
dc.date.accessioned2023-06-20T10:45:37Z
dc.date.available2023-06-20T10:45:37Z
dc.date.issued2008-08-15
dc.description© 2008 American Institute of Physics. We have greatly appreciated stimulating discussions with Manuel M. Piñeiro from the University of Vigo (Spain). We are also indebted to the Spanish Ministerio de Educación y Ciencia (Contract No. FIS2006-05323) for supporting this research.
dc.description.abstractWe present experimental results of the thermal conductivity of several nanofluids prepared by dispersing nanoparticles of SiO(2) and CuO in water and ethylene glycol at various concentrations up to approximate to 5% in mass fraction. The measurements have been performed by the multicurrent hot-wire technique. Good agreement, within 2%, is found in recommended and published thermal conductivities of the pure fluids. Our experimental technique allows a very accurate determination of the enhancement in the thermal conductivity of the fluids due to the presence of dispersed nanoparticles. Measured enhancements compare well with some of the values published so far in the literature. We have compared our results with simple theoretical models that predict the thermal conductivity of solid suspensions and found that in some cases observed enhancements are several times larger than the predicted ones.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish Ministerio de Educación y Ciencia
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/26461
dc.identifier.doi10.1063/1.2970086
dc.identifier.issn0021-8979
dc.identifier.officialurlhttp://dx.doi.org/10.1063/1.2970086
dc.identifier.relatedurlhttp://scitation.aip.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51166
dc.issue.number4
dc.journal.titleJournal of Applied Physics
dc.language.isoeng
dc.publisherAmerican Institute of Physics
dc.relation.projectIDFIS2006-05323
dc.rights.accessRightsopen access
dc.subject.cdu536
dc.subject.keywordEthylene-glycol
dc.subject.keywordHeat-transfer
dc.subject.keywordAbsolute measurements
dc.subject.keywordEnhancement
dc.subject.keywordMixtures
dc.subject.keywordNanoparticles
dc.subject.keywordViscosity
dc.subject.keywordWater
dc.subject.ucmTermodinámica
dc.subject.unesco2213 Termodinámica
dc.titleMeasurement of the thermal conductivity of nanofluids by the multicurrent hot-wire method
dc.typejournal article
dc.volume.number104
dcterms.references[1] J. A. Eastman, S. U. S. Choi, S. Li, W. Yu, and L. J. Thompson, Appl. Phys. Lett. 78, 718 (2001). [2] J. A. Eastman, S. U. S. Choi, S. Li, L. J. Thompson, and S. Lee, in Materials Research Society Symposium Proceedings No. 457 (Materials Research Society, Pittsburg, PA, 1997), pp. 3–11. [3] S. K. Das, N. Putra, P. Thiesen, and W. Roetzel, J. Heat Transfer 125, 567 (2003). [4] S. Lee, S. U. S. Choi, S. Li, and J. A. Eastman, J. Heat Transfer 121, 280 (1999). [5] K. Kwak and C. Kim, Korea-Aust. Rheol. J. 17, 35 (2005). [6] H. E. Patel, S. K. Das, T. Sundararajan, A. S. Nair, B. George, and T. Pradeep, Appl. Phys. Lett. 83, 2931 (2003). [7] T.-K. Hong, H.-S. Yang, and C. J. Choi, J. Appl. Phys. 97, 064311 (2005). [8] Y. Xuan and Q. Li, Int. J. Heat Fluid Flow 21, 58 (2000). [9] J. C. Maxwell, A Treatise on Electricity and Magnetism, 2nd ed. (Clarendon, Oxford, 1881). [10] C. H. Li and G. P. Peterson, J. Appl. Phys. 99, 084314 (2006). [11] K. S. Gandhi, Curr. Sci. 6, 717 (2007). [12] P. Keblinski, S. R. Phillpot, S. U. S. Choi, and J. A. Eastman, Int. J. Heat Mass Transfer 45, 855 (2002). [13] D. H. Kumar, H. E. Patel, V. R. R. Kumar, T. Sundararajan, T. Pradeep, and S. K. Das, Phys. Rev. Lett. 93, 144301 (2004). [14] P. Vadasz, Trans. ASME, Ser. C: J. Heat Transfer 128, 465 (2006). [15] S. P. Jang and S. U. S. Choi, Appl. Phys. Lett. 84, 4316 (2004). [16] Y. Xuan, Q. Li, and W. Hu, AIChE J. 49, 1038 (2003). [17] J. Eapen, J. Li, and S. Yip, Phys. Rev. E 76, 062501 (2007). [18] X.-Q. Wang and A. S. Mujumdar, Int. J. Therm. Sci. 46, 1 (2007). [19] M. M. Piñeiro, personal communication (October 9, 2007). [20] Y. Hwang, J. K. Lee, C. H. Lee, Y. M. Jung, S. I. Cheong, C. G. Lee, B. Ku, and S. P. Jang, Thermochim. Acta 455, 70 (2007). [21] Y. Nagasaka and A. Nagashima, Rev. Sci. Instrum. 52, 229 (1981). [22] M. J. Assael, E. Charitidou, C. Nieto de Castro, and W. Wakeham, Int. J. Thermophys. 8, 663 (1987). [23] M. Khayet and J. M. Ortiz de Zárate, Int. J. Thermophys. 26, 637 (2005). [24] H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids (Oxford University Press, Oxford, 1959). [25] J. Kestin and W. A. Wakeham, Physica A 92, 102 (1978). [26] M. J. Assael, K. D. Antoniadis, K. E. Kakosimos, and I. N. Metaxa, Int. J. Thermophys. 29, 445 (2008). [27] C. A. Nieto de Castro, R. Perkins, and H. M. Roder, Int. J. Thermophys. 12, 985 (1991). [28] M. J. Assael, L. Karagiannidis, S. M. Richardson, and W. A. Wakeham, Int. J. Thermophys. 13, 223 (1992). [29] R. L. Hamilton and O. K. Crosser, Ind. Eng. Chem. Fundam. 1, 187 (1962). [30] M. J. Assael, E. Charatidou, S. Augustinianus, and W. A. Wakeham, Int. J. Thermophys. 10, 1127 (1989). [31] D. Bohne, S. Fischer, and E. Obermeier, Ber. Bunsenges. Phys. Chem. 88, 739 (1984). [32] R. DiGuilio and A. S. Teja, J. Chem. Eng. Data 35, 117 (1990).
dspace.entity.typePublication
relation.isAuthorOfPublicationd2b809b1-3ba2-407e-add2-8b8251e306ba
relation.isAuthorOfPublication8e32e718-0959-4e6c-9e04-891d3d43d640
relation.isAuthorOfPublication.latestForDiscovery8e32e718-0959-4e6c-9e04-891d3d43d640

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Khayet50.pdf
Size:
369.53 KB
Format:
Adobe Portable Document Format

Collections