Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional. Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

Mosco convergence of sequences of homogeneous polynomials.

dc.contributor.authorFerrera Cuesta, Juan
dc.date.accessioned2023-06-20T18:49:24Z
dc.date.available2023-06-20T18:49:24Z
dc.date.issued1998
dc.description.abstractIn this paper we give a characterization of uniform convergence on weakly compact sets, for sequences of homogeneous polynomials in terms of the Mosco convergence of their level sets. The result is partially extended for holomorphic functions. Finally we study the relationship with other convergences.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDGICYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/22601
dc.identifier.issn1139-1138
dc.identifier.officialurlhttp://www.mat.ucm.es/serv/revmat/vol11-1/vol11-1b.pdf
dc.identifier.relatedurlhttp://www.mat.ucm.es/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58704
dc.issue.number1
dc.journal.titleRevista matemática complutense
dc.language.isoeng
dc.page.final41
dc.page.initial31
dc.publisherSpringer
dc.relation.projectIDPB96-0607
dc.rights.accessRightsrestricted access
dc.subject.cdu517.98
dc.subject.keywordBanach spaces.
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titleMosco convergence of sequences of homogeneous polynomials.
dc.typejournal article
dc.volume.number11
dcterms.referencesG. Beer, Converyence of coratinuona linear functionals arad their level seis. Arch. Math., 52, 1989, p. 482-491. G. Beer, Topologies on closed arad elosed convea’ seta. Kluwer Academic Publishers, Dordrecht, 1993. J.M. Borwein, 5. Fitzpatrick, Mosco convergence and tite Kadec properly. Proc. A.M.S., 106, 1989, p. 843-851. J.M. Borwein, J. Vanderwerff, Dual Kadec-Klee norrns and tiae relationsitipa betunee» Wijsrnan, slice arad Mosco convergence. Preprint. J. Ferrera, Convergence of potynornial level seta. Trans. Amer. Math. Soc. (To appear) C. Kuratowski, Topology. New York 1966 J. Llavona, Approa’imation of continuously differenliable funcliona.. North Holland Math. Studies (130) 1986. U. Mosco, Convergence of convea’ seta arad solulioras of variational iraequalities. Adv. in Math., 3,1971, p. 510-585. Mujica, Complez analysis ira Banach spaces. North Holland Math. Studies (120) 1986. M. Tsukada, Convergerace of tite besí approzimalions ira a srnootit Baraacit apace. 3. Approx. Theory, 40, 1984, p.30l-309. R Wijsman, Coravergence of sequences of coravea’ seis, coites and furacliona IL Trans. Amer. Math. Soc. 123, 1966, p. 32-45.
dspace.entity.typePublication
relation.isAuthorOfPublication1a91d6af-aaeb-4a3e-90ce-4abdf2b90ac3
relation.isAuthorOfPublication.latestForDiscovery1a91d6af-aaeb-4a3e-90ce-4abdf2b90ac3

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
19.pdf
Size:
399.94 KB
Format:
Adobe Portable Document Format

Collections