Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Surjective Nash maps between semialgebraic sets

dc.contributor.authorCarbone, Antonio
dc.contributor.authorFernando Galván, José Francisco
dc.date.accessioned2024-05-27T12:57:34Z
dc.date.available2024-05-27T12:57:34Z
dc.date.issued2024
dc.description2023 Acuerdos transformativos CRUE
dc.description.abstractIn this work we study the existence of surjective Nash maps between two given semialgebraic sets S and T. Some key ingredients are: the irreducible components S*ᵢ of S (and their intersections), the analytic path-connected components Tⱼ of T (and their intersections) and the relations between dimensions of the semialgebraic sets S*ᵢ and Tⱼ . A first step to approach the previous problem is the former characterization done by the second author of the images of affine spaces under Nash maps. The core result of this article to obtain a criterion to decide about the existence of surjective Nash maps between two semialgebraic sets is: a full characterization of the semialgebraic subsets S ⊂ Rⁿ that are the image of the closed unit ball B ͫ of R ͫ centered at the origin under a Nash map f : R ͫ → Rⁿ. The necessary and sufficient conditions that must satisfy such a semialgebraic set S are: it is compact, connected by analytic paths and has dimension d ≤ m. Two remarkable consequences of the latter result are the following: (1) pure dimensional compact irreducible arcsymmetric semialgebraic sets of dimension d are Nash images of Bd, and (2) compact semialgebraic sets of dimension d are projections of non-singular algebraic sets of dimension d whose connected components are Nash diffeomorphic to spheres (maybe of different dimensions).
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.fundingtypeAPC financiada por la UCM
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación
dc.description.sponsorshipUniversidad Complutense de Madrid
dc.description.statuspub
dc.identifier.citationCarbone, Antonio, and José F. Fernando. "Surjective Nash maps between semialgebraic sets." Advances in Mathematics 438 (2024): 109288.
dc.identifier.doi10.1016/j.aim.2023.109288
dc.identifier.issn0001-8708
dc.identifier.officialurlhttps://doi.org/10.1016/j.aim.2023.109288
dc.identifier.urihttps://hdl.handle.net/20.500.14352/104459
dc.journal.titleAdvances in Mathematics
dc.language.isoeng
dc.page.final109288-57
dc.page.initial109288-1
dc.publisherElsevier
dc.relation.projectIDPID2021-122752NB-I00
dc.relation.projectID910444
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordNash maps and images
dc.subject.keywordSemialgebraic sets connected by analytic paths
dc.subject.keywordAnalytic path-connected components
dc.subject.keywordPolynomial paths inside semialgebraic sets
dc.subject.keywordClosed balls
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleSurjective Nash maps between semialgebraic sets
dc.typejournal article
dc.type.hasVersionAM
dc.volume.number438
dspace.entity.typePublication
relation.isAuthorOfPublication499732d5-c130-4ea6-8541-c4ec934da408
relation.isAuthorOfPublication.latestForDiscovery499732d5-c130-4ea6-8541-c4ec934da408

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
fernando_surjective.pdf
Size:
1000.4 KB
Format:
Adobe Portable Document Format

Collections