Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Double Yang-Baxter deformation of spinning strings

dc.contributor.authorHernández Redondo, Rafael
dc.contributor.authorRuiz Gil, Roberto
dc.date.accessioned2023-06-16T15:21:29Z
dc.date.available2023-06-16T15:21:29Z
dc.date.issued2020-06-18
dc.description© 2020 The Authors. We are grateful to J. M. Nieto for correspondence and a careful reading of the manuscript. This work is supported by grant PGC2018-095382-B-I00 and by BSCH-UCM through grant GR3/14-A 910770. R. R. acknowledges the support of the Universidad Complutense de Madrid through the predoctoral grant CT42/18-CT43/18. R. R. also acknowledges the organizers of the program YRISW 2020: a modern primer for superconformal field theories at DESY for support while this work was being completed.
dc.description.abstractWe study the reduction of classical strings rotating in the deformed three- sphere truncation of the double Yang-Baxter deformation of theAdS(3)xS(3)xT(4)background to an integrable mechanical model. The use of the generalized spinning-string ansatz leads to an integrable deformation of the Neumann-Rosochatius system. Integrability of this system follows from the fact that the usual constraints for the Uhlenbeck constants apply to any deformation that respects the isometric coordinates of the three-sphere. We construct solutions to the system in terms of the underlying ellipsoidal coordinate. The solutions depend on the domain of the deformation parameters and the reality conditions of the roots of a fourth order polynomial. We obtain constant-radii, giant-magnon and trigonometric solutions when the roots degenerate, and analyze the possible solutions in the undeformed limit. In the case where the deformation parameters are purely imaginary and the polynomial involves two complex-conjugated roots, we find a new class of solutions. The new class is connected with twofold giant-magnon solutions in the degenerate limit of infinite period.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.sponsorshipUniversidad Complutense de Madrid
dc.description.sponsorshipUniversidad Complutense de Madrid/Banco Santander Central Hispano
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/61963
dc.identifier.doi10.1007/JHEP06(2020)115
dc.identifier.issn1029-8479
dc.identifier.officialurlhttp://doi.org/10.1007/JHEP06(2020)115
dc.identifier.relatedurlhttps://link.springer.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/6468
dc.issue.number6
dc.journal.titleJournal of high energy physics
dc.language.isoeng
dc.publisherSpringer
dc.relation.projectIDPGC2018-095382-B-I00
dc.relation.projectIDCT42/18-CT43/18
dc.relation.projectIDGR3/14-A 910770
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu53
dc.subject.keywordSigma model.
dc.subject.ucmFísica (Física)
dc.subject.unesco22 Física
dc.titleDouble Yang-Baxter deformation of spinning strings
dc.typejournal article
dspace.entity.typePublication
relation.isAuthorOfPublicationc904cec6-4e4a-45e1-a8a5-027c9abc2127
relation.isAuthorOfPublication50ad714f-fec4-4993-b6ce-515977265335
relation.isAuthorOfPublication.latestForDiscoveryc904cec6-4e4a-45e1-a8a5-027c9abc2127

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
HernándezRedondoLIBRE43+CC.pdf
Size:
479.29 KB
Format:
Adobe Portable Document Format

Collections