Verifying the body tide at the Canary Islands using tidal gravimetry observations

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Pergamon-Elsevier Science
Google Scholar
Research Projects
Organizational Units
Journal Issue
Gravity tide records from El Hierro, Tenerife and Lanzarote Islands (Canarian Archipelago) have been analyzed and compared to the theoretical body tide model (DDW) of Dehant el al. (1999). The use of more stringent criterion of tidal analysis using VAV program allowed us to reduce the error bars by a factor of two of the gravimetric factors at Tenerife and Lanzarote compared with previous published values. Also, the calibration values have been revisited at those sites. Precise ocean tide loading (OTL) corrections based on up-to-date global ocean models and improved regional ocean model have been obtained for the main tidal harmonics O1, K1, M2, S2.We also point out the importance of using the most accurate coastline definition for OTL calculations in the Canaries. The remaining observational errors depend on the accuracy of the calibration of the gravimeters and/or on the length of the observed data series. Finally, the comparison of the tidal observations with the theoretical body tide models has been done with an accuracy level of 0.1% at El Hierro, 0.4% at Tenerife and 0.5% at Lanzarote.
UCM subjects
Unesco subjects
Arnoso, J., Fernández, J., Vieira, R., 2001a. Interpretation of tidal gravity anomalies in Lanzarote, Canary Islands. J. Geodyn. 31, 341–354. Arnoso, J., Vieira, R., Velez, E.J., van Ruymbeke, M., Venedikov, A.P., 2001b. Studies of tides and instrumental performance of three gravimeters at Cueva de los Verdes (Lanzarote Spain). J. Geodet. Soc. Jpn. 47 (1), 70–75. Arnoso, J., Benavent, M., Ducarme, B., Montesinos, F.G., 2006a. A new ocean tide loading model in the Canary Islands region. J. Geodyn. 41, 100–111. Arnoso, J., Benavent, M., Montesinos, F.G., 2006b. Estimation of errors in the regional ocean tide model (CIAM) for Canary Islands. In: Proc. V Asamblea Hispano-Portuguesa de Geodesia y Geofísica. Ministerio de Medio Ambiente (CD-ROM). Baker, T.F., Edge, R.J., Jeffries, G., 1989. European tidal gravity: an improved agreement between observations and models. Geophys. Res. Lett. 16, 1109– 1112. Baker, T.F., Curtis, D.J., Dodson, A.H., 1996. A new test of earth tide models in central Europe. Geophys. Res. Lett. 23 (24), 3559–3562. Baker, T.F., Bos, M.S., 2003. Validating earth and ocean tide models using tidal gravity measurements. Geophys. J. Int. 152 (2), 468–485. Bos, M.S., Baker, T.F., 2005. An estimation of the errors in the gravity ocean tide loading computations. J. Geod. 79 (1–3), 50–63. Crossley, D., Hinderer, J., Casula, G., Francis, O., Hsu, H.-T., Imanishi, Y., Jentzsch, G., Kääriäinen, J., Meriam, J., Meurers, B., Neumeyer, J., Richter, B., Shibuya, K., Sato, T., van Dam, T., 1999. Network of superconducting gravimeters benefits a number of disciplines. EOS Trans. Am. Geophys. Union 80 (11), 121– 126. Dehant, V., Zschau, J., 1989. The effect of mantle inelasticity on tidal gravity: a comparison between the spherical and the elliptical earth model. Geophys. J. 97, 549–556. Dehant, V., Defraigne, P., Wahr, J.M., 1999. Tides for a convective earth. J. Geophys. Res. 104 (B1), 1035–1058. Dziewonski, A.M., Anderson, D.L., 1981. Preliminary reference earth model. Phys. Earth Planet. Int. 25, 297–356. Egbert, G.D., Erofeeva, S.Y., 2002. Efficient inverse modeling of barotropic ocean tides. J. Atmos. Ocean. Technol. 19 (2), 183–204. El Wahabi, A., Ducarme, B., van Ruymbeke, M., 2001. Humidity and temperature effects on LaCoste & Romberg Gravimeters. J. Geod. Soc. Jpn. 47, 10–15. Farrell, W.E., 1972. Deformation of the Earth by Surface Loads. Rev. Geophys. Space Phys. 10 (3), 761–797. Farrell, W.E., 1973. Earth tides, ocean tides and tidal loading. Philos. Trans. R. Soc. Lond. A 274, 253–259. Hartman, T., Wenzel, H.-G., 1995. The hw95 tidal potential catalogue. Geophys. Res. Lett. 22 (24), 3553–3556. LaCoste & Romberg LLC, 2002. Graviton-EG user’s manual. Revision 1.8, p. 51. Le Provost, C., Genco, M.L., Lyard, F., Vincent, P., Canceil, P., 1994. Spectroscopy of the world ocean tides from a finite-element hydrodynamic model. J. Geophys. Res. 99 (C12), 24777–24797. Le Provost, C., 2001. Ocean tides. In: Fu, L.L., Cazenave, A. (Eds.), Satellite Altimetry and Earth Sciences, vol. 69. International Geophysics Series, pp. 267–303. Lyard, F., Lefevre, F., Letellier, T., Francis, O., 2006. Modelling the global ocean tides: modern insights from FES2004. Ocean Dynam. 56, 394–415. Matsumoto, N., Sato, T., Takanezawa, G., Ooe, M., 2001. GOTIC2: a program for computation of oceanic tidal loading effect. J. Geod. Soc. Jpn. 47 (2001), 243–248. Melchior, P., 1994. A new data bank for tidal gravity measurements (db92). Phys. Earth Planet. Inter. 82, 125–155. Pálinkáˇs, V., 2006. Precise tidal measurements by spring gravimeters at the station Pecny´ . J. Geodyn. 41, 14–22. Ray, R.D., 1999. A Global Ocean Tide Model from TOPEX/POSEIDON Altimetry: GOT99.2. In: NASA Tech. Mem. 209478. Riccardi, U., Berrino, G., Corrado, G., Hinderer, J., 2008. Strategies in the processing and analysis of continuous gravity record in active volcanic areas: the case of Mt. Vesuvius. Ann. Geophys. 51 (1), 67–85. Riccardi, U., Berrino, G., Corrado, G., 2002. Changes in instrumental sensitivity of some feedback systems used in LaCoste–Romberg gravimeters. Metrologia 39, 509–515. Richter, B., Wenzel, H.-G., 1991. Precise instrumental phase lag determination by step response method. Bull. d’Inf. Marées Terr. 111, 8032–8052. Smith, W.H.F., Sandwell, D.T., 1997. Global sea floor topography from satellite altimetry and ship depth soundings. Science 277 (5334), 1956–1962. Tamura, Y., 1987. A harmonic development of the tide-generating potential. Bull. d’Inf. Marées Terr. 99, 6813–6855. van Ruymbeke, M., 1985. Transformation of nine LaCoste–Romberg gravimeters in feedback system. Bull. d’Inf. Marées Terr. 93, 6202–6228. Venedikov, A.P., Arnoso, J., Vieira, R., 2003. VAV: a program for tidal data processing. Comput. Geosci. 29, 487–502. Venedikov, A.P., Arnoso, J., Vieira, R., 2005. New version of program VAV for tidal data processing. Comput. Geosci. 31, 667–669. Vieira, R., Torroja, J.M., Toro, C., 1986. A general discussion about the normalization of gravimeters in the Iberian gravity profile. In: Vieira, R. (Ed.), Proc. 10th Int. Symp. Earth Tides. Cons. Sup. Invest. Cient., Madrid, pp. 165–175. Vieira, R., van Ruymbecke, M., Fernández, J., Toro, C., 1991. The Lanzarote Underground Laboratory. Cahiers Centre Europ. Géodyn. Séismol 4, 71–86. Vieira, R., Camacho, A.G., Toro, C., Montesinos, F.G., 1992. A calibration gravimetric line between Madrid and Valle de los Caídos stations. Comptes Rendus J.L.G. Conseil Europe 73, 18–25. Wessel, P., Smith, W.H.F., 1996. A global, self-consistent, hierarchical, highresolution shoreline database. J Geophys. Res. 101 (B4), 8741–8743.