Superposition principle and nonlinear response in spin glasses

dc.contributor.authorPaga, I.
dc.contributor.authorZhai, Q.
dc.contributor.authorBaity-Jesi, M.
dc.contributor.authorCalore, E.
dc.contributor.authorCruz, A.
dc.contributor.authorCummings, C.
dc.contributor.authorFernández Pérez, Luis Antonio
dc.contributor.authorGil-Narvion, J. M.
dc.contributor.authorGonzález-Adalid Pemartín, Isidoro
dc.contributor.authorGordillo-Guerrero, A.
dc.contributor.authorIñiguez, D.
dc.contributor.authorKenning, G. G.
dc.contributor.authorMaiorano, A.
dc.contributor.authorMarinari, E.
dc.contributor.authorMartín Mayor, Víctor
dc.contributor.authorMoreno-Gordo, J.
dc.contributor.authorMuñoz Sudupe, Antonio
dc.contributor.authorNavarro, D.
dc.contributor.authorOrbach, R. L.
dc.contributor.authorParisi, G.
dc.contributor.authorPerez-Gaviro, S.
dc.contributor.authorRicci-Tersenghi, F.
dc.contributor.authorRuiz-Lorenzo, J. J.
dc.contributor.authorSchifano, S. F.
dc.contributor.authorSchlagel, D. L.
dc.contributor.authorSeoane Bartolomé, Beatriz
dc.contributor.authorTarancon, A.
dc.contributor.authorYllanes, D.
dc.date.accessioned2025-11-07T15:53:04Z
dc.date.available2025-11-07T15:53:04Z
dc.date.issued2023-06-23
dc.description©2023 American Physical Society. These authors contributed equally to this work. DE-SC0013599; DE-AC02-07CH11358; GR21014; IB20079; Grant nº 454949; 2021-2023 Margarita Salas grant; FPU 18/02665
dc.description.abstractThe extended principle of superposition has been a touchstone of spin-glass dynamics for almost 30 years. The Uppsala group has demonstrated its validity for the metallic spin glass, CuMn, for magnetic fields H up to 10 Oe at the reduced temperature T-r = T/T-g = 0.95, where T-g is the spin-glass condensation temperature. For H > 10 Oe, they observe a departure from linear response which they ascribe to the development of nonlinear dynamics. The thrust of this paper is to develop a microscopic origin for this behavior by focusing on the time development of the spin-glass correlation length, xi (t, t(w); H). Here, t is the time after H changes, and t(w) is the time from the quench for T > T-g to the working temperature T until H changes. We connect the growth of xi (t, t(w); H) to the barrier heights Lambda(t(w)) that set the dynamics. The effect of H on the magnitude of Delta (t(w)) is responsible for affecting differently the two dynamical protocols associated with turning H off (TRM, or thermoremanent magnetization) or on (ZFC, or zero-field-cooled magnetization). This difference is a consequence of nonlinearity based on the effect of H on Delta (t(w)). Superposition is preserved if Delta(t(w)) is linear in the Hamming distance Hd (proportional to the difference between the self-overlap qEA and the overlap q[ Delta(t(w))]). However, superposition is violated if Delta(t(w)) increases faster than linear in Hd. We have previously shown, through experiment and simulation, that the barriers Delta (t(w)) do increase more rapidly than linearly with Hd through the observation that the growth of. (t, t(w); H) slows down as. (t, t(w); H) increases. In this paper, we display the difference between the zero-fieldcooled.ZFC(t, t(w); H) and the thermoremanent magnetization.TRM(t, t(w); H) correlation lengths as H increases, both experimentally and through numerical simulations, corresponding to the violation of the extended principle of superposition in line with the finding of the Uppsala Group.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipDepartment of Energy (US)
dc.description.sponsorshipUniversity of Iowa (US)
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades (España)
dc.description.sponsorshipAgencia Estatal de Investigación (España)
dc.description.sponsorshipEuropean Commission
dc.description.sponsorshipJunta de Extremadura
dc.description.sponsorshipSimons Foundation
dc.description.sponsorshipChan Zuckerberg Biohub
dc.description.sponsorshipUniversitá la Sapienza (Italia)
dc.description.statuspub
dc.identifier.citationPaga, I., et al. «Superposition Principle and Nonlinear Response in Spin Glasses». Physical Review B, vol. 107, n.o 21, junio de 2023, p. 214436. DOI.org (Crossref), https://doi.org/10.1103/PhysRevB.107.214436
dc.identifier.doi10.1103/physrevb.107.214436
dc.identifier.essn2469-9969
dc.identifier.issn2469-9950
dc.identifier.officialurlhttps//doi.org/10.1103/physrevb.107.214436
dc.identifier.relatedurlhttps://journals.aps.org/prb/abstract/10.1103/PhysRevB.107.214436
dc.identifier.urihttps://hdl.handle.net/20.500.14352/125901
dc.issue.number21
dc.journal.titlePhysical Review B
dc.language.isoeng
dc.page.final214436-21
dc.page.initial214436-1
dc.publisherAmerican Physical Society
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-136374NB-C21/ES/COMPLEJIDAD EN FISICA Y MAS ALLA: DE LOS VIDRIOS DE ESPIN A LAS INTERACCIONES SOCIALES/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-125506NA-I00/ES/FISICA ESTADISTICA DE MODELOS BASADOS EN UNA ENERGIA/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-112936GB-I00/ES/SISTEMAS COMPLEJOS: UNA APROXIMACION FISICO ESTADISTICA/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-103939RB-I00/ES/GENERADORES ELECTRONICOS DE POTENCIA VERSATILES PARA APLICACIONES DE TRANSFERENCIA DE ENERGIA ELECTROMAGNETICA/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-094684-B-C21/ES/CARACTERISTICAS UNIFICADORAS EN EL ESTUDIO DE LA COMPLEJIDAD: DE LOS MATERIALES A LAS REDES/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-094684-B-C22/ES/SUPERCOMPUTACION Y SISTEMAS COMPLEJOS/
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/694925/EU
dc.rights.accessRightsopen access
dc.subject.cdu53
dc.subject.cdu537.6
dc.subject.keywordMagnetism
dc.subject.keywordMetallic glasses
dc.subject.keywordSpin glasses
dc.subject.keywordCritical phenomena
dc.subject.ucmFísica (Física)
dc.subject.unesco2212 Física Teórica
dc.subject.unesco2202.08 Magnetismo
dc.titleSuperposition principle and nonlinear response in spin glasses
dc.typejournal article
dc.type.hasVersionAM
dc.volume.number107
dspace.entity.typePublication
relation.isAuthorOfPublication146096b1-5825-4230-8ad9-b2dad468673b
relation.isAuthorOfPublication2c2d4b95-c5fe-48c3-b9c2-2ff3064f71f3
relation.isAuthorOfPublication061118c0-eadf-4ee3-8897-2c9b65a6df66
relation.isAuthorOfPublication33f82d50-c0e4-4628-a384-f8b256a4a84e
relation.isAuthorOfPublication.latestForDiscovery146096b1-5825-4230-8ad9-b2dad468673b

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Paga, Ilaria, et al. Superposition principle and nonlinear response in spin glasses..pdf
Size:
1.44 MB
Format:
Adobe Portable Document Format
Description:
Postprint

Collections