Chaos on function spaces
dc.contributor.author | Aron, Richard M. | |
dc.contributor.author | Seoane Sepúlveda, Juan Benigno | |
dc.contributor.author | Weber, Andreas | |
dc.date.accessioned | 2023-06-20T10:33:24Z | |
dc.date.available | 2023-06-20T10:33:24Z | |
dc.date.issued | 2005 | |
dc.description.abstract | We give a sufficient condition for an operator to be chaotic and we use this condition to show that, in the Banach space C-0[0, infinity) the operator (T(lambda,c)f) (t) = lambda f (t + c) (with lambda > 1 and c > 0) is chaotic, with every n is an element of N being a period for this operator. We also describe a technique to construct, explicitly, hypercyclic functions for this operator. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/20215 | |
dc.identifier.doi | 10.1017/S0004972700038417 | |
dc.identifier.issn | 0004-9727 | |
dc.identifier.officialurl | http://journals.cambridge.org/abstract_S0004972700038417 | |
dc.identifier.relatedurl | http://journals.cambridge.org/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/50497 | |
dc.issue.number | 3 | |
dc.journal.title | Bulletin of the Australian Mathematical Society | |
dc.language.iso | eng | |
dc.page.final | 415 | |
dc.page.initial | 411 | |
dc.publisher | Cambridge University Press | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 517.98 | |
dc.subject.keyword | Hypercyclic and chaotic operators | |
dc.subject.keyword | Function spaces | |
dc.subject.ucm | Análisis funcional y teoría de operadores | |
dc.title | Chaos on function spaces | |
dc.type | journal article | |
dc.volume.number | 71 | |
dcterms.references | J. Banks, J. Brooks, G. Cairns, G. Davies, and P.Stacey, 'On Devaney's definition of chaos', Amer. Math. Monthly 99 (1992), 332-334. R..L. Devaney, An introduction to chaotic dynamical systems, (Second Edition) (Addison-Wesley Publishing Company Inc., 1989). W. Desch, W. Schappacher, and G.F. Webb, 'Hypercyclic and chaotic semigroups of linear operators', Ergodic Theory Dynamical Systems 17 (1997), 793-819. K.-G. Grosse-Erdmann, 'Universal families and hypercyclic operators', Bui Amer. Math.Soc. 36 (1999), 345-381. C. Kitai, Invariant closed sets for linear operators,(Ph.D. Thesis) (University of Toronto,Toronto, Canada, 1982). A. Weber, Chaotic semigroups, (Diplomarbeit, in German)(Universitat Karlsruhe, 2002). | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | e85d6b14-0191-4b04-b29b-9589f34ba898 | |
relation.isAuthorOfPublication.latestForDiscovery | e85d6b14-0191-4b04-b29b-9589f34ba898 |
Download
Original bundle
1 - 1 of 1