Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Chaos on function spaces

dc.contributor.authorAron, Richard M.
dc.contributor.authorSeoane Sepúlveda, Juan Benigno
dc.contributor.authorWeber, Andreas
dc.date.accessioned2023-06-20T10:33:24Z
dc.date.available2023-06-20T10:33:24Z
dc.date.issued2005
dc.description.abstractWe give a sufficient condition for an operator to be chaotic and we use this condition to show that, in the Banach space C-0[0, infinity) the operator (T(lambda,c)f) (t) = lambda f (t + c) (with lambda > 1 and c > 0) is chaotic, with every n is an element of N being a period for this operator. We also describe a technique to construct, explicitly, hypercyclic functions for this operator.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20215
dc.identifier.doi10.1017/S0004972700038417
dc.identifier.issn0004-9727
dc.identifier.officialurlhttp://journals.cambridge.org/abstract_S0004972700038417
dc.identifier.relatedurlhttp://journals.cambridge.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50497
dc.issue.number3
dc.journal.titleBulletin of the Australian Mathematical Society
dc.language.isoeng
dc.page.final415
dc.page.initial411
dc.publisherCambridge University Press
dc.rights.accessRightsrestricted access
dc.subject.cdu517.98
dc.subject.keywordHypercyclic and chaotic operators
dc.subject.keywordFunction spaces
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titleChaos on function spaces
dc.typejournal article
dc.volume.number71
dcterms.referencesJ. Banks, J. Brooks, G. Cairns, G. Davies, and P.Stacey, 'On Devaney's definition of chaos', Amer. Math. Monthly 99 (1992), 332-334. R..L. Devaney, An introduction to chaotic dynamical systems, (Second Edition) (Addison-Wesley Publishing Company Inc., 1989). W. Desch, W. Schappacher, and G.F. Webb, 'Hypercyclic and chaotic semigroups of linear operators', Ergodic Theory Dynamical Systems 17 (1997), 793-819. K.-G. Grosse-Erdmann, 'Universal families and hypercyclic operators', Bui Amer. Math.Soc. 36 (1999), 345-381. C. Kitai, Invariant closed sets for linear operators,(Ph.D. Thesis) (University of Toronto,Toronto, Canada, 1982). A. Weber, Chaotic semigroups, (Diplomarbeit, in German)(Universitat Karlsruhe, 2002).
dspace.entity.typePublication
relation.isAuthorOfPublicatione85d6b14-0191-4b04-b29b-9589f34ba898
relation.isAuthorOfPublication.latestForDiscoverye85d6b14-0191-4b04-b29b-9589f34ba898

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Seoane46.pdf
Size:
679.52 KB
Format:
Adobe Portable Document Format

Collections