Design of asynchronous phase detection algorithms optimized for wide frequency response
dc.contributor.author | Quiroga Mellado, Juan Antonio | |
dc.contributor.author | Crespo Vázquez, Daniel | |
dc.contributor.author | Gómez Pedrero, José Antonio | |
dc.date.accessioned | 2023-06-20T03:35:36Z | |
dc.date.available | 2023-06-20T03:35:36Z | |
dc.date.issued | 2010-06-10 | |
dc.description | © 2006 Optical Society of America. We acknowledge Spain’s Ministerio de Ciencia y Tecnologia for providing economic support for this work under the auspices of project DP12002-02104. | |
dc.description.abstract | In many fringe pattern processing applications the local phase has to be obtained from a sinusoidal irradiance signal with unknown local frequency. This process is called asynchronous phase demodulation. Existing algorithms for asynchronous phase detection, or asynchronous algorithms, have been designed to yield no algebraic error in the recovered value of the phase for any signal frequency. However, each asynchronous algorithm has a characteristic frequency response curve. Existing asynchronous algorithms present a range of frequencies with low response, reaching zero for particular values of the signal frequency. For real noisy signals, low response implies a low signal-to-noise ratio in the recovered phase and therefore unreliable results. We present a new Fourier-based methodology for designing asynchronous algorithms with any user-defined frequency response curve and known limit of algebraic error. We show how asynchronous algorithms designed with this method can have better properties for real conditions of noise and signal frequency variation. | |
dc.description.department | Depto. de Óptica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Spain’s Ministerio de Ciencia y Tecnología | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/22936 | |
dc.identifier.doi | 10.1364/AO.45.004037 | |
dc.identifier.issn | 0003-6935 | |
dc.identifier.officialurl | http://dx.doi.org/10.1364/AO.45.004037 | |
dc.identifier.relatedurl | http://www.opticsinfobase.org | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/43985 | |
dc.issue.number | 17 | |
dc.journal.title | Applied Optics | |
dc.language.iso | eng | |
dc.page.final | 4045 | |
dc.page.initial | 4037 | |
dc.publisher | The Optical Society of America | |
dc.relation.projectID | DP12002-02104 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 535 | |
dc.subject.keyword | Fringe Pattern-Analysis | |
dc.subject.keyword | Shifting Interferometry | |
dc.subject.keyword | Spatial Carrier | |
dc.subject.keyword | Transform | |
dc.subject.ucm | Óptica (Física) | |
dc.subject.unesco | 2209.19 Óptica Física | |
dc.title | Design of asynchronous phase detection algorithms optimized for wide frequency response | |
dc.type | journal article | |
dc.volume.number | 45 | |
dcterms.references | 1. K. Freischlad and C. L. Koliopoulos, “Fourier description of digital phase-measuring interferometry,” J. Opt. Soc. Am. A 7, 542–551 (1990). 2. D. Malacara, M. Servín, and Z. Malcacara, Interferogram Analysis for Optical Testing (Marcel Dekker, 1998). 3. P. Carré, “Installation et utilisation du comparateur photoelectrique et interferentiel du Bureau International des Poids et Mesures,” Metrologia 2, 13–23 (1966). 4. P. Hariharan, B. F. Oreb, and T. Eiju, “Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm,” Appl. Opt. 26, 2504–2505 (1987). 5. M. Servín and F. J. Cuevas, “A novel technique for spatial phase-shifting interferometry,” J. Mod. Opt. 42, 1853–1862 (1995). 6. K. G. Larkin, “Efficient nonlinear algorithm for envelope detection in white light interferometry,” J. Opt. Soc. Am. A 13, 832–843 (1996). 7. J. A. Gómez-Pedrero, J. A. Quiroga, and M. Servín, “Asynchronous phase demodulation algorithm for temporal evaluation of fringe patterns with spatial carrier,” J. Mod. Opt. 51, 97–109 (2004). 8. B. Ströbel, “Processing of interferometric phase maps as complex-valued phasor images,” Appl. Opt. 35, 2192–2198 (1996). 9. M. Cherbuliez and P. Jacquot, “Phase computation through wavelet analysis: yesterday and nowadays,” in Proceedings of Fringe’01: The Fourth International Workshop on Automatic Processing of Fringe Patterns, W. Ostes and W. Juptner, eds. (Elsevier, 2001), pp. 154–162. 10. J. Zhong and J. Weng, “Spatial carrier-fringe pattern analysis by means of wavelet transform: wavelet transform profilometry,” Appl. Opt. 43, 4993–4998 (2004). 11. C. A. Sciammarella and T. Kim, “Determination of strains from fringe patterns using space-frequency representations,” Opt. Eng. 42, 3182–3193 (2003). 12. Q. Kemao, “Windowed Fourier transform for fringe pattern analysis,” Appl. Opt. 43, 2695–2702 (2004). 13. A. Asundi and W. Jun, “Strain contouring using Gabor filters: principle and algorithm,” Opt. Eng. 41, 1400–1405 (2002). 14. J. W. Harris and H. Stocker, Handbook of Mathematics and Computational Science (Springer, 1998). | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 1c171089-8e25-448f-bcce-28d030f8f43a | |
relation.isAuthorOfPublication | 5c5cb6be-771c-40ed-8af0-cdfdbdfb3d36 | |
relation.isAuthorOfPublication.latestForDiscovery | 1c171089-8e25-448f-bcce-28d030f8f43a |
Download
Original bundle
1 - 1 of 1