Identification of a heat transfer coefficient depending on pressure and temperature.
dc.contributor.author | Fraguela, A. | |
dc.contributor.author | Infante Del Río, Juan Antonio | |
dc.contributor.author | Ramos Del Olmo, Ángel Manuel | |
dc.contributor.author | Rey Cabezas, José María | |
dc.date.accessioned | 2023-06-20T00:22:34Z | |
dc.date.available | 2023-06-20T00:22:34Z | |
dc.date.issued | 2012 | |
dc.description.abstract | This article deals with an inverse problem concerning the identification of the heat exchange coefficient H (assumed depending on the temperature and/or pressure) between a certain material with the external environment, when only experimental measurements of the temperature are supposed to be known. The main difficulties are that we consider the case of functions H depending on the solution of the state equation and we use experimental data that may have errors. We develop rigorous mathematical strategies for this identification. We separately consider pressure and temperature dependence and, in both cases, we set several scenarios for the inverse problem. For each scenario, we know the initial and ambient temperatures, we identify function H through different methods and we obtain error bounds in adequate norms (uniform and square integrable). Finally, we perform numerical tests in order to compare the results obtained with these algorithms and with some classical regularization algorithms. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.faculty | Instituto de Matemática Interdisciplinar (IMI) | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/17665 | |
dc.identifier.doi | 10.1080/17415977.2011.587516 | |
dc.identifier.issn | 1741-5977 | |
dc.identifier.officialurl | http://www.tandfonline.com/doi/pdf/10.1080/17415977.2011.587516 | |
dc.identifier.relatedurl | http://www.tandfonline.com | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/42477 | |
dc.issue.number | 2 | |
dc.journal.title | Inverse Problems in Science and Engineering | |
dc.page.final | 172 | |
dc.page.initial | 137 | |
dc.publisher | Taylor & Francis | |
dc.rights.accessRights | metadata only access | |
dc.subject.cdu | 519.6 | |
dc.subject.cdu | 517.9 | |
dc.subject.keyword | Heat transfer | |
dc.subject.keyword | Function identification | |
dc.subject.keyword | Inverse problem | |
dc.subject.keyword | Regularization techniques | |
dc.subject.keyword | Algorithm | |
dc.subject.keyword | Tikhonov egularization | |
dc.subject.keyword | Discrepancy principle | |
dc.subject.keyword | Landweber’s iterative method | |
dc.subject.keyword | Numerical experiments | |
dc.subject.ucm | Análisis numérico | |
dc.subject.ucm | Ecuaciones diferenciales | |
dc.subject.unesco | 1206 Análisis Numérico | |
dc.subject.unesco | 1202.07 Ecuaciones en Diferencias | |
dc.title | Identification of a heat transfer coefficient depending on pressure and temperature. | |
dc.type | journal article | |
dc.volume.number | 20 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | e9307548-bcc4-44a6-8639-b485aa07a256 | |
relation.isAuthorOfPublication | 581c3cdf-f1ce-41e0-ac1e-c32b110407b1 | |
relation.isAuthorOfPublication | 1cb447c8-e8e7-4d74-b66a-b26404ed1d18 | |
relation.isAuthorOfPublication.latestForDiscovery | e9307548-bcc4-44a6-8639-b485aa07a256 |