Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Pointwise control of the Burgers equation and related Nash equilibrium problems: Computational approach

dc.contributor.authorRamos Del Olmo, Ángel Manuel
dc.contributor.authorGlowinski, R.
dc.contributor.authorPeriaux, J.
dc.date.accessioned2023-06-20T17:07:22Z
dc.date.available2023-06-20T17:07:22Z
dc.date.issued2002
dc.description.abstractThis article is concerned with the numerical solution of multiobjective control problems associated with nonlinear partial differential equations and more precisely the Burgers equation. For this kind of problems, we look for the Nash equilibrium, which is the solution to a noncooperative game. To compute the solution of the problem, we use a combination of finite-difference methods for the time discretization, finite-element methods for the space discretization, and a quasi-Newton BFGS algorithm for the iterative solution of the discrete control problem. Finally, we apply the above methodology to the solution of several tests problems. To be able to compare our results with existing results in the literature, we discuss first a single-objective control problem, already investigated by other authors. Finally, we discuss the multiobjective case.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.sponsorshipUniversidad Complutense de Madrid,
dc.description.sponsorshipTexas Higher Education Coordinating Board
dc.description.sponsorshipDGES
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17723
dc.identifier.doi10.1023/A:1017907930931
dc.identifier.issn0022-3239
dc.identifier.officialurlhttp://www.springerlink.com/content/qglexu2n6bc62mxc/fulltext.pdf
dc.identifier.relatedurlhttp://www.springerlink.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57805
dc.issue.number3
dc.journal.titleJournal of optimization theory and applications
dc.language.isoeng
dc.page.final516
dc.page.initial499
dc.publisherKluwer Academic/Plenum Publ
dc.relation.projectIDPB96-0583
dc.rights.accessRightsrestricted access
dc.subject.cdu517.95
dc.subject.cdu519.8
dc.subject.keywordBurgers equation
dc.subject.keywordpointwise control
dc.subject.keywordNash equilibria
dc.subject.keywordAdjoint system
dc.subject.keywordDirac measures
dc.subject.keywordquasi-Newton algorithms
dc.subject.keywordSingleobjective control problems
dc.subject.keywordmultiobjective control problems.
dc.subject.ucmAnálisis matemático
dc.subject.ucmInvestigación operativa (Matemáticas)
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.subject.unesco1207 Investigación Operativa
dc.titlePointwise control of the Burgers equation and related Nash equilibrium problems: Computational approach
dc.typejournal article
dc.volume.number112
dcterms.referencesRAMOS, A. M., GLOWINSKI, R., and PERIAUX, J., Nash Equilibria for the Multiobjectiûe Control of Partial Differential Equations, Journal of Optimization Theory and Applications, Vol. 112, pp. 457–498, 2002. SHIVAMOGGI, B. K., Theoretical Fluid Dynamics, Martinus Nijhoff Publishers,Dordrecht, Holland, 1985. DEAN, E. J., and GUBERNATIS, P., Pointwise Control of the Burgers Equation:A Numerical Approach, Computers and Mathematics with Applications,Vol. 22, pp. 93–100, 1991. BERGGREN, M., GLOWINSKI, R., and LIONS, J. L., A Computational Approach to Controllability Issues for Flow-Related Models, (I): Pointwise Control of the Viscous Burgers Equation, International Journal of Computational Fluid Dynamics, Vol. 7, pp. 237–252, 1996. GLOWINSKI, R., and LIONS, J. L., Exact and Approximate Controllability for Distributed Parameter Systems, II, Acta Numerica 1995, Edited by A. Iserles,Cambridge University Press, Cambridge, England, pp. 159–333, 1995. LIU, D. C., and NOCEDAL, J., On the Limited Memory BFGS Method for Large-Scale Optimization, Mathematical Programming, Vol. 45, pp. 503–528, 1989. DIAZ, J. I., Sobre la Controlabilidad Aproximada de Problemas No Lineales Disipatiûos,Jornadas Hispano–rancesas sobre Control de Sistemas Distribuidos,Edited by A. Valle, Universidad de Ma´laga, Ma´laga, Spain, pp. 41–48, 1990. DIAZ, J. I., Obstruction and Some Approximate Controllability Results for the Burgers Equation and Related Problems, Control of Partial Differential Equations and Applications, Edited by E. Casas, Marcel Dekker, New York, NY, pp. 63–76, 1996. DIAZ, J. I., and RAMOS, A.M., Numerical Experiments Regarding the Localized Control of Semilinear Parabolic Problems, Proceedings of the European Congress on Computational Methods in Applied Sciences and Engineering, Barcelona, Spain, 2000. RAMOS, A. M., GLOWINSKI, R., and PERIAUX, J., Pointwise Control of the Burgers Equation and Related Nash Equilibrium Problems: A Computational Approach, Matema´tica Aplicada Report MA-UCM 2001-6, Universidad Complutense de Madrid, 2001. NASH, J. F., Noncooperatiûe Games, Annals of Mathematics, Vol. 54, pp. 286–295, 1951. PARETO, V., Cours d’Economie Politique, Rouge, Lausanne,Switzerland, 1896. VON STACKELBERG, H., Marktform und Gleichgewicht, Springer, Berlin,Germany, 1934.
dspace.entity.typePublication
relation.isAuthorOfPublication581c3cdf-f1ce-41e0-ac1e-c32b110407b1
relation.isAuthorOfPublication.latestForDiscovery581c3cdf-f1ce-41e0-ac1e-c32b110407b1

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RamosdelOlmo17.pdf
Size:
123.66 KB
Format:
Adobe Portable Document Format

Collections