Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Fitting individual‐based models of spatial population dynamics to long‐term monitoring data

dc.contributor.authorMalchow, Anne‐Kathleen
dc.contributor.authorFandos Guzmán, Guillermo
dc.contributor.authorKormann, Urs G.
dc.contributor.authorGrüebler, Martin U.
dc.contributor.authorKéry, Marc
dc.contributor.authorHartig, Florian
dc.contributor.authorZurell, Damaris
dc.date.accessioned2025-03-25T13:05:35Z
dc.date.available2025-03-25T13:05:35Z
dc.date.issued2024-04-17
dc.descriptionAnne-Kathleen Malchow and Damaris Zurell were supported by Deutsche Forschungsgemeinschaft under Grant agreement ZU 361/1-1. This publication has been prepared using European Union's Copernicus Land Monitoring Service information. Open Access funding enabled and organized by Projekt DEAL.
dc.description.abstractGenerating spatial predictions of species distribution is a central task for research and policy. Currently, correlative species distribution models (cSDMs) are among the most widely used tools for this purpose. However, a fundamental assumption of cSDMs, that species distributions are in equilibrium with their environment, is rarely fulfilled in real data and limits the applicability of cSDMs for dynamic projections. Process-based, dynamic SDMs (dSDMs) promise to overcome these limitations as they explicitly represent transient dynamics and enhance spatiotemporal transferability. Software tools for implementing dSDMs are becoming increasingly available, but their parameter estimation can be complex. Here, we test the feasibility of calibrating and validating a dSDM using long-term monitoring data of Swiss red kites (Milvus milvus). This population has shown strong increases in abundance and a progressive range expansion over the last decades, indicating a nonequilibrium situation. We construct an individual-based model using the RangeShiftR modeling platform and use Bayesian inference for model calibration. This allows the integration of heterogeneous data sources, such as parameter estimates from published literature and observational data from monitoring schemes, with a coherent assessment of parameter uncertainty. Our monitoring data encompass counts of breeding pairs at 267 sites across Switzerland over 22 years. We validate our model using a spatial-block cross-validation scheme and assess predictive performance with a rank-correlation coefficient. Our model showed very good predictive accuracy of spatial projections and represented well the observed population dynamics over the last two decades. Results suggest that reproductive success was a key factor driving the observed range expansion. According to our model, the Swiss red kite population fills large parts of its current range but has potential for further increases in density. We demonstrate the practicality of data integration and validation for dSDMs using RangeShiftR. This approach can improve predictive performance compared to cSDMs. The workflow presented here can be adopted for any population for which some prior knowledge on demographic and dispersal parameters as well as spatiotemporal observations of abundance or presence/absence are available. The fitted model provides improved quantitative insights into the ecology of a species, which can greatly aid conservation and management efforts.
dc.description.departmentDepto. de Biodiversidad, Ecología y Evolución
dc.description.facultyFac. de Ciencias Biológicas
dc.description.refereedTRUE
dc.description.sponsorshipDeutsche Forschungsgemeinschaft
dc.description.sponsorshipHochschulrektorenkonferenz
dc.description.statuspub
dc.identifier.citationMalchow, A.-K., Fandos, G., Kormann, U. G., Grüebler, M. U., Kéry, M., Hartig, F., & Zurell, D. (2024). Fitting individual-based models of spatial population dynamics to long-term monitoring data. Ecological Applications, 34(4). https://doi.org/10.1002/EAP.2966
dc.identifier.doi10.1002/eap.2966
dc.identifier.essn1939-5582
dc.identifier.issn1051-0761
dc.identifier.officialurlhttps://doi.org/10.1002/eap.2966
dc.identifier.relatedurlhttps://esajournals.onlinelibrary.wiley.com/doi/10.1002/eap.2966
dc.identifier.urihttps://hdl.handle.net/20.500.14352/118936
dc.issue.number4
dc.journal.titleEcological Applications
dc.language.isoeng
dc.page.final19
dc.page.initial1
dc.publisherEcological Society of America
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.cdu574
dc.subject.cdu57.087.1
dc.subject.cdu574.3
dc.subject.cdu574.9
dc.subject.keywordBayesian inference
dc.subject.keywordCross-validation
dc.subject.keywordDispersal
dc.subject.keywordInverse calibration
dc.subject.keywordProcess-based model
dc.subject.keywordRange dynamics
dc.subject.keywordSpatially explicit
dc.subject.keywordSpecies distribution model (SDM)
dc.subject.ucmEcología (Biología)
dc.subject.ucmBiomatemáticas
dc.subject.ucmMedio ambiente natural
dc.subject.unesco2505.01 Biogeografía
dc.subject.unesco2405 Biometría
dc.subject.unesco2405 Biometría
dc.titleFitting individual‐based models of spatial population dynamics to long‐term monitoring data
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number34
dspace.entity.typePublication
relation.isAuthorOfPublication48eedd17-5277-44b0-8c76-090678ca6a42
relation.isAuthorOfPublication.latestForDiscovery48eedd17-5277-44b0-8c76-090678ca6a42

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Fitting_individual‐based_models.pdf
Size:
1.32 MB
Format:
Adobe Portable Document Format

Collections